XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Maltese
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-mt")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-mt")
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-mt
Space using wietsedv/xlm-roberta-base-ft-udpos28-mt 1
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported37.500
- Dutch Test accuracy on Universal Dependencies v2.8self-reported52.300
- German Test accuracy on Universal Dependencies v2.8self-reported51.700
- Italian Test accuracy on Universal Dependencies v2.8self-reported54.700
- French Test accuracy on Universal Dependencies v2.8self-reported49.100
- Spanish Test accuracy on Universal Dependencies v2.8self-reported49.500
- Russian Test accuracy on Universal Dependencies v2.8self-reported64.700
- Swedish Test accuracy on Universal Dependencies v2.8self-reported52.000
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported48.700
- Danish Test accuracy on Universal Dependencies v2.8self-reported52.300