cu / README.md
omarkamali's picture
Upload all models and assets for cu (20251001)
6198255 verified
metadata
language: cu
language_name: CU
language_family: slavic_historical
tags:
  - wikilangs
  - nlp
  - tokenizer
  - embeddings
  - n-gram
  - markov
  - wikipedia
  - monolingual
  - family-slavic_historical
license: mit
library_name: wikilangs
pipeline_tag: feature-extraction
datasets:
  - omarkamali/wikipedia-monthly
dataset_info:
  name: wikipedia-monthly
  description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
  - name: best_compression_ratio
    type: compression
    value: 4.945
  - name: best_isotropy
    type: isotropy
    value: 0.2996
  - name: vocabulary_size
    type: vocab
    value: 0
generated: 2026-01-03T00:00:00.000Z

CU - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on CU Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

📋 Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.879x 3.88 0.1306% 107,930
16k 4.369x 4.37 0.1472% 95,813
32k 4.945x 🏆 4.95 0.1666% 84,659

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: thumb Ꚛ (имѧ Ꙋкрестъ) словѣньскаѥго ѩꙁꙑка боукꙑ ѥстъ. ѩꙁꙑка боукъви

Vocab Tokens Count
8k ▁thumb ▁ ꚛ ▁( имѧ ▁ꙋ к ре стъ ) ... (+7 more) 17
16k ▁thumb ▁ ꚛ ▁( имѧ ▁ꙋ кре стъ ) ▁словѣньскаѥго ... (+6 more) 16
32k ▁thumb ▁ ꚛ ▁( имѧ ▁ꙋкрестъ ) ▁словѣньскаѥго ▁ѩꙁꙑка ▁боукꙑ ... (+4 more) 14

Sample 2: Могилєвъ и · · градъ Бѣлꙑ Роуси ѥстъ ⁙ Людии обитаѥтъ 371 318 ⁙ Помѣновєнъ жє ꙁа...

Vocab Tokens Count
8k ▁могилєвъ ▁и ▁· ▁· ▁градъ ▁бѣлꙑ ▁роуси ▁ѥстъ ▁⁙ ▁людии ... (+31 more) 41
16k ▁могилєвъ ▁и ▁· ▁· ▁градъ ▁бѣлꙑ ▁роуси ▁ѥстъ ▁⁙ ▁людии ... (+28 more) 38
32k ▁могилєвъ ▁и ▁· ▁· ▁градъ ▁бѣлꙑ ▁роуси ▁ѥстъ ▁⁙ ▁людии ... (+27 more) 37

Sample 3: thumb Ѱ (имѧ ыпсьлон) словѣньскаѥго ѩꙁꙑка боукꙑ ѥстъ ѩꙁꙑка боукъви аꙁъбоукꙑ боук...

Vocab Tokens Count
8k ▁thumb ▁ѱ ▁( имѧ ▁ы п сь лон ) ▁словѣньскаѥго ... (+7 more) 17
16k ▁thumb ▁ѱ ▁( имѧ ▁ы п сь лон ) ▁словѣньскаѥго ... (+7 more) 17
32k ▁thumb ▁ѱ ▁( имѧ ▁ыпсьлон ) ▁словѣньскаѥго ▁ѩꙁꙑка ▁боукꙑ ▁ѥстъ ... (+4 more) 14

Key Findings

  • Best Compression: 32k achieves 4.945x compression
  • Lowest UNK Rate: 8k with 0.1306% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 803 9.65 1,418 38.7% 88.8%
2-gram Subword 451 🏆 8.82 2,626 56.3% 95.5%
3-gram Word 974 9.93 1,743 35.2% 82.0%
3-gram Subword 2,632 11.36 12,321 25.6% 67.4%
4-gram Word 1,602 10.65 2,970 29.2% 66.7%
4-gram Subword 8,242 13.01 33,307 16.1% 45.2%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 ꙁьри такождє 429
2 людии обитаѥтъ 260
3 ѥстъ людии 234
4 градъ ѥстъ 230
5 стольнъ градъ 186

3-grams (Word):

Rank N-gram Count
1 ѥстъ людии обитаѥтъ 181
2 въ дрьжавѣ бѣла 120
3 дрьжавѣ бѣла роусь 120
4 градъ ѥстъ людии 115
5 роусь сѣи оудѣлъ 114

4-grams (Word):

Rank N-gram Count
1 въ дрьжавѣ бѣла роусь 120
2 ꙁємьскъ оудѣлъ въ дрьжавѣ 114
3 оудѣлъ въ дрьжавѣ бѣла 114
4 дрьжавѣ бѣла роусь сѣи 114
5 ѥстъ ꙁємьскъ оудѣлъ въ 114

2-grams (Subword):

Rank N-gram Count
1 ъ _ 17,731
2 и _ 9,203
3 а _ 8,612
4 с т 8,393
5 _ с 6,604

3-grams (Subword):

Rank N-gram Count
1 т ъ _ 5,941
2 _ · _ 4,423
3 ь с к 3,904
4 _ ⁙ _ 3,096
5 с т ъ 3,041

4-grams (Subword):

Rank N-gram Count
1 _ ѥ с т 2,898
2 с т ъ _ 2,880
3 ѥ с т ъ 2,700
4 ъ _ ⁙ _ 1,900
5 т ъ _ ⁙ 1,811

Key Findings

  • Best Perplexity: 2-gram (subword) with 451
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~45% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.4875 1.402 2.62 18,795 51.2%
1 Subword 0.9912 1.988 7.09 1,078 0.9%
2 Word 0.1229 1.089 1.22 48,721 87.7%
2 Subword 0.8197 1.765 4.19 7,639 18.0%
3 Word 0.0442 1.031 1.07 58,656 95.6%
3 Subword 0.5526 1.467 2.43 31,947 44.7%
4 Word 0.0206 🏆 1.014 1.03 61,545 97.9%
4 Subword 0.3393 1.265 1.70 77,657 66.1%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. и словѣньскъ ѩꙁꙑкъ ѥстъ людии обитаѥтъ стольнъ градъ ѥстъ ѥгожє потомъць тєодєнъ ꙗко идєжє kb постоꙗ...
  2. ѥстъ додєканъ ѫглѥводородьно вєщьство алканъ рѧдоу ѥстъ ꙗко нарочито поѩтиѥ паоуло коєлио пїитъ браꙁ...
  3. лѣта нарєчєнъ съ тꙑлоу жєнꙑ ѳєологїѩ вївлїи въ дрьжавѣ бѣла роусь сѣи оудѣлъ въ дрьжавѣ бѣла

Context Size 2:

  1. ꙁьри такождє владимѣръ мєждоусѣтии гради гради въ асии аꙁєрбаичаноѵ
  2. людии обитаѥтъ масачоусєтсѣ 7 лєѡдръ обитаѥтъ таджикистана дрьжавьнъ ѩꙁꙑкъ соуми ѥстъ симъ ѩꙁꙑкомъ 9...
  3. ѥстъ людии обитаѥтъ лѣта 788 лѣто 168 17 64 320 0 10 23 ꙁапражиѥиванофранковьска 13 9 13

Context Size 3:

  1. ѥстъ людии обитаѥтъ 700 тꙑсѫщь основанъ ѥстъ лѣта нарєчєнъ градъ съ лѣта гєѡргїꙗ жє мьнитъ лꙑхнꙑ ꙗко...
  2. въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома мѣньска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ...
  3. дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома бєрєстєиска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣком...

Context Size 4:

  1. въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома мѣньска ѡбласть конѣць иматъ оурѧдъ рѣкомъ ...
  2. ѥстъ ꙁємьскъ оудѣлъ въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ градоу витьбьскъ въ ѡбласти рѣкома вит...
  3. ꙁємьскъ оудѣлъ въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома бєрєстєиска ѡбласть повѣтъ и...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _инъ_єньсєжапь_н
  2. а_вє_шємл҄итѣка_п
  3. о_стєрїтовоуспє_

Context Size 2:

  1. ъ_ка_ѥстъ_бѣлꙗѥтъ
  2. и_·_тавѣ_коѩбр҄їꙗ:
  3. а_костомолїтарьно

Context Size 3:

  1. тъ_словѣньскъ_ѥстъ
  2. _·_єпїсимь_40_грос
  3. ьскъвьсцѣ_на_оупи_

Context Size 4:

  1. _ѥстъ_⁙_наи́бѫ́льша_г
  2. стъ_гоѵглъ_єси_и_8_
  3. ѥстъ_⁙_сѥго_ѩꙁꙑка_к

Key Findings

  • Best Predictability: Context-4 (word) with 97.9% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (77,657 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 6,213
Total Tokens 63,034
Mean Frequency 10.15
Median Frequency 3
Frequency Std Dev 60.04

Most Common Words

Rank Word Frequency
1 и 2,825
2 ѥстъ 2,697
3 лѣта 958
4 бѣ 912
5 въ 843
6 градъ 795
7 ꙁьри 533
8 такождє 529
9 жє 512
10 людии 470

Least Common Words (from vocabulary)

Rank Word Frequency
1 статистичьского 2
2 катєгорїꙗ 2
3 سخ 2
4 هس 2
5 ش 2
6 ؤخخم 2
7 خىث 2
8 ىعةلاثق 2
9 صشس 2
10 пльсковьская 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9368
R² (Goodness of Fit) 0.986351
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 40.9%
Top 1,000 72.7%
Top 5,000 96.2%
Top 10,000 0.0%

Key Findings

  • Zipf Compliance: R²=0.9864 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 40.9% of corpus
  • Long Tail: -3,787 words needed for remaining 100.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Note: Multilingual alignment visualization not available for this language.

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.2996 🏆 0.4830 N/A N/A
mono_64d 64 0.0761 0.4499 N/A N/A
mono_128d 128 0.0111 0.4641 N/A N/A

Key Findings

  • Best Isotropy: mono_32d with 0.2996 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.4657. Lower values indicate better semantic separation.
  • Alignment Quality: No aligned models evaluated in this run.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

⚠️ Warning: This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 0.000 Low morphological productivity ⚠️ Likely unreliable
Idiomaticity Gap -1.000 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-пр правилъ, протєстантї́зма, прѣславъ
-по помꙑшлѥниѥ, послѣдни, польꙃєвати

Productive Suffixes

Suffix Examples
въсѣхъ, правилъ, кѷрїллъ
-къ арктїчьскъ, оучєникъ, оукъ
-ка владимѣрьска, банчьска, вльгоградьска
-нъ октадєканъ, ѥдьнѥнъ, дръжавьнъ
-ска владимѣрьска, банчьска, вльгоградьска
-скъ арктїчьскъ, лєниньскъ, въсточьнословѣньскъ
-кꙑ шавьльскꙑ, дрєвл҄ьнѥгрьчьскꙑ, аѵстрїискꙑ
-ьска владимѣрьска, банчьска, вльгоградьска

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
боук 1.84x 14 contexts боукꙑ, боуквꙑ, боукъвъ
ловѣ 1.56x 18 contexts словѣ, словѣнъ, словѣнє
слов 1.69x 14 contexts слово, слова, словѣ
ьжав 1.70x 13 contexts дрьжавѫ, дрьжавꙑ, дрьжавъ
ньск 1.60x 15 contexts мѣньска, жєньскъ, мѣньскъ
ласт 1.40x 20 contexts власти, властъ, власть
ьска 1.56x 14 contexts омьска, людьска, мѣньска
овѣн 1.77x 9 contexts словѣнъ, словѣнє, словѣнїꙗ
град 1.57x 12 contexts градъ, градѣ, гради
ьскъ 1.55x 11 contexts омьскъ, жєньскъ, томьскъ
блас 1.57x 10 contexts ѡбласти, область, ѡбласть
рьжа 1.62x 9 contexts дрьжавѫ, дрьжавꙑ, дрьжавъ

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-пр 34 words приморьскъ, природьнꙑхъ
-по 34 words польꙃоуѭтъ, полѫостровъ
-по -нъ 11 words подобьнъ, поушькинъ
-по -тъ 7 words польꙃоуѭтъ, польꙃоуѥтъ
-по -къ 7 words подъбрадъкъ, пол҄ьскъ
-по -ка 7 words политика, политическа
-пр -къ 6 words приморьскъ, прѣꙁъсибирьскъ
-по -скъ 6 words пол҄ьскъ, подольскъ
-пр -нъ 6 words природьнъ, прѡтонъ
-по -ска 5 words политическа, подъкарпатьска

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
самостоꙗтѣл҄ьнъ самостоꙗтѣл҄ь-нъ 4.5 самостоꙗтѣл҄ь
аѵстралїиска аѵстралїи-ска 4.5 аѵстралїи
аѵстрїиска аѵстрїи-ска 4.5 аѵстрїи
франкїиска франкїи-ска 4.5 франкїи
аѵстрїискъ аѵстрїи-скъ 4.5 аѵстрїи
сибирьскъ сибирь-скъ 4.5 сибирь
їталїискъ їталїи-скъ 4.5 їталїи
ꙗпѡнїискъ ꙗпѡнїи-скъ 4.5 ꙗпѡнїи
ꙗпѡнїиска ꙗпѡнїи-ска 4.5 ꙗпѡнїи
посєлєниѥ по-сєлєниѥ 4.5 сєлєниѥ
посєлєниꙗ по-сєлєниꙗ 4.5 сєлєниꙗ
поминаѭтъ по-минаѭ-тъ 3.0 минаѭ
подълѣсьскъ по-дълѣсь-скъ 3.0 дълѣсь
єѯадєканъ єѯадє-ка-нъ 3.0 єѯадє
политическꙑ по-литиче-скꙑ 3.0 литиче

6.6 Linguistic Interpretation

Automated Insight: The language CU appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 32k BPE Best compression (4.94x)
N-gram 2-gram Lowest perplexity (451)
Markov Context-4 Highest predictability (97.9%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

R² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 10:39:18