metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:264
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: OpenAI models
sentences:
- >-
What is the name of the checkpoint obtained after fine-tuning and
additional RL process?
- >-
Which models showed performance gains even after memorization
performance had saturated?
- >-
What are the four techniques used for inducing knowledge acquisition in
fine-tuned models?
- source_sentence: Section 2.3 is about TRAINING.
sentences:
- What is the section 2.3 about?
- >-
In which publication and volume was the paper "Retrieval-augmented
generation for knowledge-intensive nlp tasks" published?
- >-
Who are the authors of the paper "Removing rlhf protections in gpt-4 via
fine-tuning"?
- source_sentence: >-
The main advantage of the mentioned approach over exact string matching is
that it is significantly better at reducing false negatives (missing
correct responses).
sentences:
- >-
Who is the performance on the generalization task (Vignettes) compared
to the Medical dataset questions?
- >-
Q:Where was the paper "Training language models to follow instructions
with human feedback" published?
- >-
What is the main advantage of the mentioned approach over exact string
matching?
- source_sentence: Chunting Zhou, Pengfei Liu, Puxin Xu.
sentences:
- >-
What type of questions are generated from each Python file in
Scikit-Learn’s repository?
- >-
Who are the first three authors of the paper "Lima: Less is more for
alignment"?
- >-
What model is used to generate QA pairs and rephrase them as short
clinical vignettes?
- source_sentence: >-
The topic of the first paper is "Fine-tuning gpt-3 for russian text
summarization."
sentences:
- >-
What is the model's response when the date is changed to September 8,
2030?
- What is the topic of the first paper mentioned in the text?
- >-
What is the prompt used in the masking example for the given fact
statement?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.4
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5666666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6666666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11333333333333336
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06666666666666668
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5666666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6666666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.520075424207518
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4745238095238095
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4911198244479979
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.36666666666666664
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6333333333333333
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.36666666666666664
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12666666666666668
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.36666666666666664
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6333333333333333
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5276816602931818
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4730555555555555
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.48591804976272246
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.43333333333333335
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5666666666666667
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5666666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6666666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.43333333333333335
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18888888888888886
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11333333333333336
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06666666666666668
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.43333333333333335
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5666666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5666666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6666666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5384601202448717
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4984126984126984
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5093647325589986
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.3
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12000000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06000000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4445103975371312
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3938888888888889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.40394887488531556
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.26666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.43333333333333335
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5333333333333333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14444444444444443
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05333333333333334
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.26666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.43333333333333335
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5333333333333333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.40728018212553163
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.36587301587301585
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.384350058982412
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("willy-arison/bge-base-financial-willy3")
sentences = [
'The topic of the first paper is "Fine-tuning gpt-3 for russian text summarization."',
'What is the topic of the first paper mentioned in the text?',
"What is the model's response when the date is changed to September 8, 2030?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4 |
cosine_accuracy@3 |
0.5 |
cosine_accuracy@5 |
0.5667 |
cosine_accuracy@10 |
0.6667 |
cosine_precision@1 |
0.4 |
cosine_precision@3 |
0.1667 |
cosine_precision@5 |
0.1133 |
cosine_precision@10 |
0.0667 |
cosine_recall@1 |
0.4 |
cosine_recall@3 |
0.5 |
cosine_recall@5 |
0.5667 |
cosine_recall@10 |
0.6667 |
cosine_ndcg@10 |
0.5201 |
cosine_mrr@10 |
0.4745 |
cosine_map@100 |
0.4911 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3667 |
cosine_accuracy@3 |
0.5 |
cosine_accuracy@5 |
0.6333 |
cosine_accuracy@10 |
0.7 |
cosine_precision@1 |
0.3667 |
cosine_precision@3 |
0.1667 |
cosine_precision@5 |
0.1267 |
cosine_precision@10 |
0.07 |
cosine_recall@1 |
0.3667 |
cosine_recall@3 |
0.5 |
cosine_recall@5 |
0.6333 |
cosine_recall@10 |
0.7 |
cosine_ndcg@10 |
0.5277 |
cosine_mrr@10 |
0.4731 |
cosine_map@100 |
0.4859 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4333 |
cosine_accuracy@3 |
0.5667 |
cosine_accuracy@5 |
0.5667 |
cosine_accuracy@10 |
0.6667 |
cosine_precision@1 |
0.4333 |
cosine_precision@3 |
0.1889 |
cosine_precision@5 |
0.1133 |
cosine_precision@10 |
0.0667 |
cosine_recall@1 |
0.4333 |
cosine_recall@3 |
0.5667 |
cosine_recall@5 |
0.5667 |
cosine_recall@10 |
0.6667 |
cosine_ndcg@10 |
0.5385 |
cosine_mrr@10 |
0.4984 |
cosine_map@100 |
0.5094 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3 |
cosine_accuracy@3 |
0.5 |
cosine_accuracy@5 |
0.6 |
cosine_accuracy@10 |
0.6 |
cosine_precision@1 |
0.3 |
cosine_precision@3 |
0.1667 |
cosine_precision@5 |
0.12 |
cosine_precision@10 |
0.06 |
cosine_recall@1 |
0.3 |
cosine_recall@3 |
0.5 |
cosine_recall@5 |
0.6 |
cosine_recall@10 |
0.6 |
cosine_ndcg@10 |
0.4445 |
cosine_mrr@10 |
0.3939 |
cosine_map@100 |
0.4039 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2667 |
cosine_accuracy@3 |
0.4333 |
cosine_accuracy@5 |
0.5 |
cosine_accuracy@10 |
0.5333 |
cosine_precision@1 |
0.2667 |
cosine_precision@3 |
0.1444 |
cosine_precision@5 |
0.1 |
cosine_precision@10 |
0.0533 |
cosine_recall@1 |
0.2667 |
cosine_recall@3 |
0.4333 |
cosine_recall@5 |
0.5 |
cosine_recall@10 |
0.5333 |
cosine_ndcg@10 |
0.4073 |
cosine_mrr@10 |
0.3659 |
cosine_map@100 |
0.3844 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 264 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 264 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 3 tokens
- mean: 15.37 tokens
- max: 61 tokens
|
- min: 9 tokens
- mean: 18.22 tokens
- max: 37 tokens
|
- Samples:
positive |
anchor |
Hospital systems may wish to update an LLM with their current medical guidelines. |
Give an example of a specific domain or industry that might want to update a language model with their own knowledge. |
The Gemini models struggle to learn a significant proportion of the data even after 20 or 30 epochs. |
How do the Gemini models perform in learning the training data compared to the OpenAI models? |
Anthropic, Google, OpenAI |
Which companies have contributed to the rapid iteration and evolution of Large Language Models? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 50
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 50
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
1.0 |
1 |
- |
0.3407 |
0.3622 |
0.3385 |
0.3376 |
0.3703 |
2.0 |
2 |
- |
0.3739 |
0.3652 |
0.3634 |
0.3429 |
0.3613 |
3.0 |
3 |
- |
0.3742 |
0.3666 |
0.3584 |
0.3495 |
0.3504 |
4.0 |
4 |
- |
0.3838 |
0.3666 |
0.3580 |
0.3480 |
0.3488 |
1.0 |
1 |
- |
0.3742 |
0.3666 |
0.3584 |
0.3495 |
0.3504 |
2.0 |
2 |
- |
0.3939 |
0.3767 |
0.3611 |
0.3626 |
0.3302 |
3.0 |
3 |
- |
0.3844 |
0.3896 |
0.3873 |
0.3589 |
0.3388 |
4.0 |
4 |
- |
0.3885 |
0.4011 |
0.3989 |
0.3581 |
0.3515 |
5.0 |
5 |
- |
0.3790 |
0.4024 |
0.3984 |
0.3658 |
0.3563 |
6.0 |
6 |
- |
0.3815 |
0.4047 |
0.3998 |
0.3904 |
0.3573 |
7.0 |
7 |
- |
0.3868 |
0.4164 |
0.4038 |
0.4024 |
0.3512 |
8.0 |
8 |
- |
0.3971 |
0.4224 |
0.4047 |
0.3933 |
0.3518 |
9.0 |
9 |
- |
0.3971 |
0.4224 |
0.4062 |
0.3933 |
0.3536 |
10.0 |
10 |
69.6696 |
0.3971 |
0.4353 |
0.4062 |
0.4056 |
0.3579 |
1.0 |
1 |
- |
0.3971 |
0.4353 |
0.4062 |
0.4056 |
0.3579 |
2.0 |
2 |
- |
0.3885 |
0.4454 |
0.4181 |
0.3947 |
0.3558 |
3.0 |
3 |
- |
0.4141 |
0.4482 |
0.4424 |
0.4020 |
0.3584 |
4.0 |
4 |
- |
0.4215 |
0.4502 |
0.4443 |
0.3854 |
0.3571 |
5.0 |
5 |
- |
0.4402 |
0.4596 |
0.4366 |
0.3874 |
0.3671 |
6.0 |
6 |
- |
0.4402 |
0.4500 |
0.4372 |
0.3901 |
0.3645 |
7.0 |
7 |
- |
0.4551 |
0.4557 |
0.4390 |
0.4045 |
0.3489 |
8.0 |
8 |
- |
0.4658 |
0.4637 |
0.4390 |
0.3865 |
0.3487 |
9.0 |
9 |
- |
0.4658 |
0.4741 |
0.4586 |
0.3827 |
0.3587 |
10.0 |
10 |
41.2785 |
0.4590 |
0.4741 |
0.4510 |
0.3941 |
0.3600 |
11.0 |
11 |
- |
0.4590 |
0.4741 |
0.4515 |
0.3841 |
0.3604 |
12.0 |
12 |
- |
0.4605 |
0.4802 |
0.4556 |
0.3864 |
0.3945 |
13.0 |
13 |
- |
0.4590 |
0.4792 |
0.4433 |
0.3864 |
0.3768 |
14.0 |
14 |
- |
0.4595 |
0.4844 |
0.4447 |
0.3964 |
0.3812 |
15.0 |
15 |
- |
0.4605 |
0.4945 |
0.4447 |
0.3974 |
0.3869 |
16.0 |
16 |
- |
0.4611 |
0.4951 |
0.4465 |
0.3974 |
0.3861 |
17.0 |
17 |
- |
0.4605 |
0.4951 |
0.4465 |
0.3974 |
0.3869 |
18.0 |
18 |
- |
0.4605 |
0.4955 |
0.4588 |
0.4097 |
0.3905 |
19.0 |
19 |
- |
0.4605 |
0.4951 |
0.4479 |
0.3974 |
0.3869 |
20.0 |
20 |
24.2435 |
0.4605 |
0.4951 |
0.4479 |
0.3964 |
0.3869 |
1.0 |
1 |
- |
0.4605 |
0.4955 |
0.4588 |
0.4097 |
0.3905 |
2.0 |
2 |
- |
0.4613 |
0.4951 |
0.4472 |
0.3969 |
0.3779 |
3.0 |
3 |
- |
0.4736 |
0.4955 |
0.4697 |
0.3979 |
0.3844 |
4.0 |
4 |
- |
0.4736 |
0.4958 |
0.4705 |
0.3985 |
0.3844 |
5.0 |
5 |
- |
0.4739 |
0.4993 |
0.4724 |
0.3965 |
0.3873 |
6.0 |
6 |
- |
0.4828 |
0.4916 |
0.4756 |
0.4146 |
0.3773 |
7.0 |
7 |
- |
0.4832 |
0.5012 |
0.5002 |
0.4023 |
0.3817 |
8.0 |
8 |
- |
0.4928 |
0.5012 |
0.5057 |
0.4061 |
0.3802 |
9.0 |
9 |
- |
0.4947 |
0.5005 |
0.5192 |
0.4184 |
0.4012 |
10.0 |
10 |
14.397 |
0.4951 |
0.5105 |
0.5174 |
0.4151 |
0.3935 |
11.0 |
11 |
- |
0.4968 |
0.5114 |
0.5218 |
0.4151 |
0.3935 |
12.0 |
12 |
- |
0.4973 |
0.5225 |
0.5151 |
0.4328 |
0.3983 |
13.0 |
13 |
- |
0.4979 |
0.5214 |
0.5147 |
0.4318 |
0.3926 |
14.0 |
14 |
- |
0.5004 |
0.5229 |
0.5147 |
0.4151 |
0.4023 |
15.0 |
15 |
- |
0.4989 |
0.5258 |
0.5167 |
0.4318 |
0.4066 |
16.0 |
16 |
- |
0.5033 |
0.5269 |
0.5167 |
0.4336 |
0.4091 |
17.0 |
17 |
- |
0.5048 |
0.5282 |
0.5167 |
0.4336 |
0.3995 |
18.0 |
18 |
- |
0.5048 |
0.5308 |
0.5175 |
0.4336 |
0.4091 |
19.0 |
19 |
- |
0.5033 |
0.5207 |
0.5175 |
0.4325 |
0.4091 |
20.0 |
20 |
8.6526 |
0.5033 |
0.5207 |
0.5160 |
0.4325 |
0.4203 |
21.0 |
21 |
- |
0.5156 |
0.5207 |
0.5214 |
0.4336 |
0.4202 |
22.0 |
22 |
- |
0.5156 |
0.5218 |
0.5229 |
0.4306 |
0.4202 |
23.0 |
23 |
- |
0.5171 |
0.5222 |
0.5175 |
0.4354 |
0.4100 |
24.0 |
24 |
- |
0.5156 |
0.5207 |
0.5175 |
0.4354 |
0.4096 |
25.0 |
25 |
- |
0.5252 |
0.5222 |
0.5204 |
0.4311 |
0.4082 |
26.0 |
26 |
- |
0.5267 |
0.5222 |
0.5160 |
0.4355 |
0.4316 |
27.0 |
27 |
- |
0.5267 |
0.5218 |
0.5160 |
0.4362 |
0.4316 |
28.0 |
28 |
- |
0.5171 |
0.5218 |
0.5175 |
0.4372 |
0.4329 |
29.0 |
29 |
- |
0.5171 |
0.5177 |
0.5175 |
0.4372 |
0.4358 |
30.0 |
30 |
5.2469 |
0.5171 |
0.5207 |
0.5242 |
0.4420 |
0.4252 |
31.0 |
31 |
- |
0.5062 |
0.5191 |
0.5365 |
0.4474 |
0.4262 |
32.0 |
32 |
- |
0.5062 |
0.5238 |
0.5365 |
0.4474 |
0.4343 |
33.0 |
33 |
- |
0.5048 |
0.5200 |
0.5279 |
0.4430 |
0.4292 |
34.0 |
34 |
- |
0.5048 |
0.5200 |
0.5269 |
0.4430 |
0.4466 |
35.0 |
35 |
- |
0.5062 |
0.5214 |
0.5269 |
0.4430 |
0.4292 |
36.0 |
36 |
- |
0.5085 |
0.5223 |
0.5269 |
0.4430 |
0.4389 |
37.0 |
37 |
- |
0.5085 |
0.5223 |
0.5262 |
0.4430 |
0.4196 |
38.0 |
38 |
- |
0.5201 |
0.5281 |
0.5385 |
0.4474 |
0.4239 |
39.0 |
39 |
- |
0.5201 |
0.5238 |
0.5385 |
0.4474 |
0.4239 |
40.0 |
40 |
4.274 |
0.5201 |
0.5267 |
0.5256 |
0.4445 |
0.4196 |
41.0 |
41 |
- |
0.5201 |
0.5223 |
0.5262 |
0.4474 |
0.4239 |
42.0 |
42 |
- |
0.5078 |
0.5277 |
0.5379 |
0.4445 |
0.4073 |
43.0 |
43 |
- |
0.5215 |
0.5281 |
0.5379 |
0.4445 |
0.4196 |
44.0 |
44 |
- |
0.5215 |
0.5291 |
0.5256 |
0.4489 |
0.4196 |
45.0 |
45 |
- |
0.5201 |
0.5277 |
0.5256 |
0.4445 |
0.4196 |
46.0 |
46 |
- |
0.5078 |
0.5277 |
0.5262 |
0.4445 |
0.4196 |
47.0 |
47 |
- |
0.5201 |
0.5277 |
0.5379 |
0.4445 |
0.4073 |
48.0 |
48 |
- |
0.5215 |
0.5291 |
0.5262 |
0.4445 |
0.4073 |
49.0 |
49 |
- |
0.5215 |
0.5291 |
0.5385 |
0.4489 |
0.4116 |
50.0 |
50 |
3.6753 |
0.5201 |
0.5277 |
0.5385 |
0.4445 |
0.4073 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}