willy-arison's picture
Add new SentenceTransformer model
d54fc70 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:264
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: OpenAI models
    sentences:
      - >-
        What is the name of the checkpoint obtained after fine-tuning and
        additional RL process?
      - >-
        Which models showed performance gains even after memorization
        performance had saturated?
      - >-
        What are the four techniques used for inducing knowledge acquisition in
        fine-tuned models?
  - source_sentence: Section 2.3 is about TRAINING.
    sentences:
      - What is the section 2.3 about?
      - >-
        In which publication and volume was the paper "Retrieval-augmented
        generation for knowledge-intensive nlp tasks" published?
      - >-
        Who are the authors of the paper "Removing rlhf protections in gpt-4 via
        fine-tuning"?
  - source_sentence: >-
      The main advantage of the mentioned approach over exact string matching is
      that it is significantly better at reducing false negatives (missing
      correct responses).
    sentences:
      - >-
        Who is the performance on the generalization task (Vignettes) compared
        to the Medical dataset questions?
      - >-
        Q:Where was the paper "Training language models to follow instructions
        with human feedback" published?
      - >-
        What is the main advantage of the mentioned approach over exact string
        matching?
  - source_sentence: Chunting Zhou, Pengfei Liu, Puxin Xu.
    sentences:
      - >-
        What type of questions are generated from each Python file in
        Scikit-Learn’s repository?
      - >-
        Who are the first three authors of the paper "Lima: Less is more for
        alignment"?
      - >-
        What model is used to generate QA pairs and rephrase them as short
        clinical vignettes?
  - source_sentence: >-
      The topic of the first paper is "Fine-tuning gpt-3 for russian text
      summarization."
    sentences:
      - >-
        What is the model's response when the date is changed to September 8,
        2030?
      - What is the topic of the first paper mentioned in the text?
      - >-
        What is the prompt used in the masking example for the given fact
        statement?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.4
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5666666666666667
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6666666666666666
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.16666666666666663
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11333333333333336
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06666666666666668
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.4
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5666666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6666666666666666
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.520075424207518
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4745238095238095
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4911198244479979
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.36666666666666664
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6333333333333333
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.36666666666666664
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.16666666666666663
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12666666666666668
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07000000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.36666666666666664
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6333333333333333
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5276816602931818
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4730555555555555
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.48591804976272246
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.43333333333333335
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5666666666666667
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5666666666666667
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6666666666666666
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.43333333333333335
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.18888888888888886
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11333333333333336
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06666666666666668
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.43333333333333335
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5666666666666667
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5666666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6666666666666666
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5384601202448717
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4984126984126984
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5093647325589986
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.3
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.16666666666666663
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12000000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06000000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.3
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4445103975371312
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3938888888888889
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.40394887488531556
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.26666666666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.43333333333333335
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5333333333333333
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.26666666666666666
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.14444444444444443
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05333333333333334
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.26666666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.43333333333333335
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5333333333333333
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.40728018212553163
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.36587301587301585
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.384350058982412
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("willy-arison/bge-base-financial-willy3")
# Run inference
sentences = [
    'The topic of the first paper is "Fine-tuning gpt-3 for russian text summarization."',
    'What is the topic of the first paper mentioned in the text?',
    "What is the model's response when the date is changed to September 8, 2030?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.4
cosine_accuracy@3 0.5
cosine_accuracy@5 0.5667
cosine_accuracy@10 0.6667
cosine_precision@1 0.4
cosine_precision@3 0.1667
cosine_precision@5 0.1133
cosine_precision@10 0.0667
cosine_recall@1 0.4
cosine_recall@3 0.5
cosine_recall@5 0.5667
cosine_recall@10 0.6667
cosine_ndcg@10 0.5201
cosine_mrr@10 0.4745
cosine_map@100 0.4911

Information Retrieval

Metric Value
cosine_accuracy@1 0.3667
cosine_accuracy@3 0.5
cosine_accuracy@5 0.6333
cosine_accuracy@10 0.7
cosine_precision@1 0.3667
cosine_precision@3 0.1667
cosine_precision@5 0.1267
cosine_precision@10 0.07
cosine_recall@1 0.3667
cosine_recall@3 0.5
cosine_recall@5 0.6333
cosine_recall@10 0.7
cosine_ndcg@10 0.5277
cosine_mrr@10 0.4731
cosine_map@100 0.4859

Information Retrieval

Metric Value
cosine_accuracy@1 0.4333
cosine_accuracy@3 0.5667
cosine_accuracy@5 0.5667
cosine_accuracy@10 0.6667
cosine_precision@1 0.4333
cosine_precision@3 0.1889
cosine_precision@5 0.1133
cosine_precision@10 0.0667
cosine_recall@1 0.4333
cosine_recall@3 0.5667
cosine_recall@5 0.5667
cosine_recall@10 0.6667
cosine_ndcg@10 0.5385
cosine_mrr@10 0.4984
cosine_map@100 0.5094

Information Retrieval

Metric Value
cosine_accuracy@1 0.3
cosine_accuracy@3 0.5
cosine_accuracy@5 0.6
cosine_accuracy@10 0.6
cosine_precision@1 0.3
cosine_precision@3 0.1667
cosine_precision@5 0.12
cosine_precision@10 0.06
cosine_recall@1 0.3
cosine_recall@3 0.5
cosine_recall@5 0.6
cosine_recall@10 0.6
cosine_ndcg@10 0.4445
cosine_mrr@10 0.3939
cosine_map@100 0.4039

Information Retrieval

Metric Value
cosine_accuracy@1 0.2667
cosine_accuracy@3 0.4333
cosine_accuracy@5 0.5
cosine_accuracy@10 0.5333
cosine_precision@1 0.2667
cosine_precision@3 0.1444
cosine_precision@5 0.1
cosine_precision@10 0.0533
cosine_recall@1 0.2667
cosine_recall@3 0.4333
cosine_recall@5 0.5
cosine_recall@10 0.5333
cosine_ndcg@10 0.4073
cosine_mrr@10 0.3659
cosine_map@100 0.3844

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 264 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 264 samples:
    positive anchor
    type string string
    details
    • min: 3 tokens
    • mean: 15.37 tokens
    • max: 61 tokens
    • min: 9 tokens
    • mean: 18.22 tokens
    • max: 37 tokens
  • Samples:
    positive anchor
    Hospital systems may wish to update an LLM with their current medical guidelines. Give an example of a specific domain or industry that might want to update a language model with their own knowledge.
    The Gemini models struggle to learn a significant proportion of the data even after 20 or 30 epochs. How do the Gemini models perform in learning the training data compared to the OpenAI models?
    Anthropic, Google, OpenAI Which companies have contributed to the rapid iteration and evolution of Large Language Models?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 50
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 50
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
1.0 1 - 0.3407 0.3622 0.3385 0.3376 0.3703
2.0 2 - 0.3739 0.3652 0.3634 0.3429 0.3613
3.0 3 - 0.3742 0.3666 0.3584 0.3495 0.3504
4.0 4 - 0.3838 0.3666 0.3580 0.3480 0.3488
1.0 1 - 0.3742 0.3666 0.3584 0.3495 0.3504
2.0 2 - 0.3939 0.3767 0.3611 0.3626 0.3302
3.0 3 - 0.3844 0.3896 0.3873 0.3589 0.3388
4.0 4 - 0.3885 0.4011 0.3989 0.3581 0.3515
5.0 5 - 0.3790 0.4024 0.3984 0.3658 0.3563
6.0 6 - 0.3815 0.4047 0.3998 0.3904 0.3573
7.0 7 - 0.3868 0.4164 0.4038 0.4024 0.3512
8.0 8 - 0.3971 0.4224 0.4047 0.3933 0.3518
9.0 9 - 0.3971 0.4224 0.4062 0.3933 0.3536
10.0 10 69.6696 0.3971 0.4353 0.4062 0.4056 0.3579
1.0 1 - 0.3971 0.4353 0.4062 0.4056 0.3579
2.0 2 - 0.3885 0.4454 0.4181 0.3947 0.3558
3.0 3 - 0.4141 0.4482 0.4424 0.4020 0.3584
4.0 4 - 0.4215 0.4502 0.4443 0.3854 0.3571
5.0 5 - 0.4402 0.4596 0.4366 0.3874 0.3671
6.0 6 - 0.4402 0.4500 0.4372 0.3901 0.3645
7.0 7 - 0.4551 0.4557 0.4390 0.4045 0.3489
8.0 8 - 0.4658 0.4637 0.4390 0.3865 0.3487
9.0 9 - 0.4658 0.4741 0.4586 0.3827 0.3587
10.0 10 41.2785 0.4590 0.4741 0.4510 0.3941 0.3600
11.0 11 - 0.4590 0.4741 0.4515 0.3841 0.3604
12.0 12 - 0.4605 0.4802 0.4556 0.3864 0.3945
13.0 13 - 0.4590 0.4792 0.4433 0.3864 0.3768
14.0 14 - 0.4595 0.4844 0.4447 0.3964 0.3812
15.0 15 - 0.4605 0.4945 0.4447 0.3974 0.3869
16.0 16 - 0.4611 0.4951 0.4465 0.3974 0.3861
17.0 17 - 0.4605 0.4951 0.4465 0.3974 0.3869
18.0 18 - 0.4605 0.4955 0.4588 0.4097 0.3905
19.0 19 - 0.4605 0.4951 0.4479 0.3974 0.3869
20.0 20 24.2435 0.4605 0.4951 0.4479 0.3964 0.3869
1.0 1 - 0.4605 0.4955 0.4588 0.4097 0.3905
2.0 2 - 0.4613 0.4951 0.4472 0.3969 0.3779
3.0 3 - 0.4736 0.4955 0.4697 0.3979 0.3844
4.0 4 - 0.4736 0.4958 0.4705 0.3985 0.3844
5.0 5 - 0.4739 0.4993 0.4724 0.3965 0.3873
6.0 6 - 0.4828 0.4916 0.4756 0.4146 0.3773
7.0 7 - 0.4832 0.5012 0.5002 0.4023 0.3817
8.0 8 - 0.4928 0.5012 0.5057 0.4061 0.3802
9.0 9 - 0.4947 0.5005 0.5192 0.4184 0.4012
10.0 10 14.397 0.4951 0.5105 0.5174 0.4151 0.3935
11.0 11 - 0.4968 0.5114 0.5218 0.4151 0.3935
12.0 12 - 0.4973 0.5225 0.5151 0.4328 0.3983
13.0 13 - 0.4979 0.5214 0.5147 0.4318 0.3926
14.0 14 - 0.5004 0.5229 0.5147 0.4151 0.4023
15.0 15 - 0.4989 0.5258 0.5167 0.4318 0.4066
16.0 16 - 0.5033 0.5269 0.5167 0.4336 0.4091
17.0 17 - 0.5048 0.5282 0.5167 0.4336 0.3995
18.0 18 - 0.5048 0.5308 0.5175 0.4336 0.4091
19.0 19 - 0.5033 0.5207 0.5175 0.4325 0.4091
20.0 20 8.6526 0.5033 0.5207 0.5160 0.4325 0.4203
21.0 21 - 0.5156 0.5207 0.5214 0.4336 0.4202
22.0 22 - 0.5156 0.5218 0.5229 0.4306 0.4202
23.0 23 - 0.5171 0.5222 0.5175 0.4354 0.4100
24.0 24 - 0.5156 0.5207 0.5175 0.4354 0.4096
25.0 25 - 0.5252 0.5222 0.5204 0.4311 0.4082
26.0 26 - 0.5267 0.5222 0.5160 0.4355 0.4316
27.0 27 - 0.5267 0.5218 0.5160 0.4362 0.4316
28.0 28 - 0.5171 0.5218 0.5175 0.4372 0.4329
29.0 29 - 0.5171 0.5177 0.5175 0.4372 0.4358
30.0 30 5.2469 0.5171 0.5207 0.5242 0.4420 0.4252
31.0 31 - 0.5062 0.5191 0.5365 0.4474 0.4262
32.0 32 - 0.5062 0.5238 0.5365 0.4474 0.4343
33.0 33 - 0.5048 0.5200 0.5279 0.4430 0.4292
34.0 34 - 0.5048 0.5200 0.5269 0.4430 0.4466
35.0 35 - 0.5062 0.5214 0.5269 0.4430 0.4292
36.0 36 - 0.5085 0.5223 0.5269 0.4430 0.4389
37.0 37 - 0.5085 0.5223 0.5262 0.4430 0.4196
38.0 38 - 0.5201 0.5281 0.5385 0.4474 0.4239
39.0 39 - 0.5201 0.5238 0.5385 0.4474 0.4239
40.0 40 4.274 0.5201 0.5267 0.5256 0.4445 0.4196
41.0 41 - 0.5201 0.5223 0.5262 0.4474 0.4239
42.0 42 - 0.5078 0.5277 0.5379 0.4445 0.4073
43.0 43 - 0.5215 0.5281 0.5379 0.4445 0.4196
44.0 44 - 0.5215 0.5291 0.5256 0.4489 0.4196
45.0 45 - 0.5201 0.5277 0.5256 0.4445 0.4196
46.0 46 - 0.5078 0.5277 0.5262 0.4445 0.4196
47.0 47 - 0.5201 0.5277 0.5379 0.4445 0.4073
48.0 48 - 0.5215 0.5291 0.5262 0.4445 0.4073
49.0 49 - 0.5215 0.5291 0.5385 0.4489 0.4116
50.0 50 3.6753 0.5201 0.5277 0.5385 0.4445 0.4073
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}