SentenceTransformer based on neuralmind/bert-base-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-base-portuguese-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: neuralmind/bert-base-portuguese-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/bertimbau-embed-hard-neg")
# Run inference
sentences = [
'O 1.º troféu disputado em Portugal foi ganho pelo Sporting e o Sporting é líder do campeonato com o FC Porto .',
'O primeiro troféu que se disputou em Portugal foi ganho pelo Sporting.',
'Alexandre Pato recebeu em posição legal, fez o gol, mas o impedimento foi marcado.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.797 | 0.756 |
spearman_cosine | 0.7938 | 0.7401 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 26,156 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 13 tokens
- mean: 24.92 tokens
- max: 43 tokens
- min: 10 tokens
- mean: 18.61 tokens
- max: 33 tokens
- min: 9 tokens
- mean: 18.79 tokens
- max: 39 tokens
- Samples:
anchor positive negative Quatro jovens foram assassinados na madrugada de hoje (19) em Carapicuíba, município da região metropolitana de São Paulo.
Quatro jovens foram assassinados em Carapicuíba.
O enterro ocorreu no Cemitério Municipal de Carapicuíba.
Quatro jovens foram assassinados na madrugada de hoje (19) em Carapicuíba, município da região metropolitana de São Paulo.
Quatro jovens foram assassinados em Carapicuíba.
Esta madrugada (14) foi coroada a nova Miss EUA.
Quatro jovens foram assassinados na madrugada de hoje (19) em Carapicuíba, município da região metropolitana de São Paulo.
Quatro jovens foram assassinados em Carapicuíba.
Há alguns de focos de incêndio na Região Metropolitana de Manaus.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 5,520 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 15 tokens
- mean: 25.03 tokens
- max: 47 tokens
- min: 9 tokens
- mean: 20.03 tokens
- max: 40 tokens
- min: 9 tokens
- mean: 19.4 tokens
- max: 40 tokens
- Samples:
anchor positive negative Um novo rumor direto da Coréia do Sul nos dá uma ideia do material que será usado no próximo Galaxy S7, que será anunciado oficialmente em janeiro de 2016.
O novo Galaxy S7 deverá ser anunciado oficialmente em janeiro de 2016.
Comparado com o Galaxy S6 da Samsung, a diferença na bateria é muito grande.
Um novo rumor direto da Coréia do Sul nos dá uma ideia do material que será usado no próximo Galaxy S7, que será anunciado oficialmente em janeiro de 2016.
O novo Galaxy S7 deverá ser anunciado oficialmente em janeiro de 2016.
Teremos um smartphone criado pela grande empresa de refrigerante Pepsi.
Um novo rumor direto da Coréia do Sul nos dá uma ideia do material que será usado no próximo Galaxy S7, que será anunciado oficialmente em janeiro de 2016.
O novo Galaxy S7 deverá ser anunciado oficialmente em janeiro de 2016.
Recorde-se que a irmã de Kim Kardashian e o companheiro se separaram no passado mês de julho, depois de nove anos juntos.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 220per_device_eval_batch_size
: 220num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 220per_device_eval_batch_size
: 220per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.6424 | - |
0.0840 | 10 | - | 0.1726 | 0.6642 | - |
0.1681 | 20 | - | 0.0523 | 0.7141 | - |
0.2521 | 30 | - | 0.0242 | 0.7580 | - |
0.3361 | 40 | - | 0.0160 | 0.7759 | - |
0.4202 | 50 | - | 0.0100 | 0.7848 | - |
0.5042 | 60 | - | 0.0069 | 0.7893 | - |
0.5882 | 70 | - | 0.0059 | 0.7904 | - |
0.6723 | 80 | - | 0.0059 | 0.7907 | - |
0.7563 | 90 | - | 0.0053 | 0.7908 | - |
0.8403 | 100 | 0.1681 | 0.0049 | 0.7921 | - |
0.9244 | 110 | - | 0.0049 | 0.7925 | - |
1.0084 | 120 | - | 0.0049 | 0.7929 | - |
1.0924 | 130 | - | 0.0050 | 0.7925 | - |
1.1765 | 140 | - | 0.0053 | 0.7922 | - |
1.2605 | 150 | - | 0.0052 | 0.7919 | - |
1.3445 | 160 | - | 0.0048 | 0.7922 | - |
1.4286 | 170 | - | 0.0046 | 0.7923 | - |
1.5126 | 180 | - | 0.0045 | 0.7928 | - |
1.5966 | 190 | - | 0.0045 | 0.7932 | - |
1.6807 | 200 | 0.0013 | 0.0047 | 0.7933 | - |
1.7647 | 210 | - | 0.0047 | 0.7929 | - |
1.8487 | 220 | - | 0.0047 | 0.7928 | - |
1.9328 | 230 | - | 0.0047 | 0.7928 | - |
2.0168 | 240 | - | 0.0046 | 0.7926 | - |
2.1008 | 250 | - | 0.0047 | 0.7927 | - |
2.1849 | 260 | - | 0.0047 | 0.7927 | - |
2.2689 | 270 | - | 0.0047 | 0.7929 | - |
2.3529 | 280 | - | 0.0045 | 0.7933 | - |
2.4370 | 290 | - | 0.0045 | 0.7934 | - |
2.5210 | 300 | 0.0007 | 0.0045 | 0.7932 | - |
2.6050 | 310 | - | 0.0045 | 0.7933 | - |
2.6891 | 320 | - | 0.0046 | 0.7932 | - |
2.7731 | 330 | - | 0.0046 | 0.7932 | - |
2.8571 | 340 | - | 0.0046 | 0.7933 | - |
2.9412 | 350 | - | 0.0047 | 0.7934 | - |
3.0252 | 360 | - | 0.0047 | 0.7934 | - |
3.1092 | 370 | - | 0.0046 | 0.7935 | - |
3.1933 | 380 | - | 0.0046 | 0.7936 | - |
3.2773 | 390 | - | 0.0047 | 0.7937 | - |
3.3613 | 400 | 0.0005 | 0.0046 | 0.7937 | - |
3.4454 | 410 | - | 0.0046 | 0.7937 | - |
3.5294 | 420 | - | 0.0046 | 0.7937 | - |
3.6134 | 430 | - | 0.0046 | 0.7937 | - |
3.6975 | 440 | - | 0.0046 | 0.7938 | - |
3.7815 | 450 | - | 0.0046 | 0.7938 | - |
3.8655 | 460 | - | 0.0047 | 0.7939 | - |
3.9496 | 470 | - | 0.0046 | 0.7940 | - |
4.0336 | 480 | - | 0.0046 | 0.7940 | - |
4.1176 | 490 | - | 0.0046 | 0.7940 | - |
4.2017 | 500 | 0.0005 | 0.0046 | 0.7940 | - |
4.2857 | 510 | - | 0.0046 | 0.7939 | - |
4.3697 | 520 | - | 0.0046 | 0.7938 | - |
4.4538 | 530 | - | 0.0046 | 0.7938 | - |
4.5378 | 540 | - | 0.0046 | 0.7938 | - |
4.6218 | 550 | - | 0.0046 | 0.7939 | - |
4.7059 | 560 | - | 0.0046 | 0.7939 | - |
4.7899 | 570 | - | 0.0046 | 0.7938 | - |
4.8739 | 580 | - | 0.0046 | 0.7938 | - |
4.9580 | 590 | - | 0.0046 | 0.7938 | - |
-1 | -1 | - | - | - | 0.7401 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wilsonmarciliojr/bertimbau-embed-hard-neg
Base model
neuralmind/bert-base-portuguese-casedEvaluation results
- Pearson Cosine on sts devself-reported0.797
- Spearman Cosine on sts devself-reported0.794
- Pearson Cosine on sts testself-reported0.756
- Spearman Cosine on sts testself-reported0.740