SentenceTransformer based on neuralmind/bert-base-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-base-portuguese-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: neuralmind/bert-base-portuguese-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/bertimbau-embed-nli")
# Run inference
sentences = [
'O centroavante ainda não foi oficializado, mas deve ser apresentado amanhã na Academia de Futebol.',
'O novo centroavante do Palmeiras já está treinando na Academia de Futebol.',
'Um cachorro preto está carregando um brinquedo azul e branco na boca',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.8089 | 0.7707 |
spearman_cosine | 0.8034 | 0.7498 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,767 training samples
- Columns:
premise
andhypothesis
- Approximate statistics based on the first 1000 samples:
premise hypothesis type string string details - min: 9 tokens
- mean: 21.94 tokens
- max: 41 tokens
- min: 9 tokens
- mean: 18.54 tokens
- max: 41 tokens
- Samples:
premise hypothesis David Silva bateu escanteio, Kompany escalou as costas de Chiellini e o zagueiro marcou contra.
David Silva cobrou escanteio, o zagueiro se apoiou em Chiellini e cabeceou.
Tenho orgulho de ter feito parte da construção do PSOL.
Ajudei a construir o PSOL, e disso muito me orgulho.
O caminho de ajuste via aumento de carga tributária é muito mal visto pela sociedade e pelo Congresso.
O aumento da carga tributária também não é visto com bons olhos pelo congresso.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 851 evaluation samples
- Columns:
premise
andhypothesis
- Approximate statistics based on the first 851 samples:
premise hypothesis type string string details - min: 6 tokens
- mean: 18.68 tokens
- max: 47 tokens
- min: 6 tokens
- mean: 16.42 tokens
- max: 40 tokens
- Samples:
premise hypothesis De acordo com o relatório, foram notificados 6.052 casos suspeitos de dengue, sendo 641 descartados.
Do total de casos notificados, 10.768 foram confirmados como dengue e 15.202 descartados.
Seu irmão George é o terceiro na linha sucessória da coroa britânica.
Charlotte é a quarta na linha de sucessão da coroa britânica.
A estreia do Brasil na Copa América está marcada para o dia 14 de junho, contra o Peru.
O time estreia na Copa América contra o Peru.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.6424 | - |
0.3226 | 10 | - | 0.2763 | 0.7449 | - |
0.6452 | 20 | - | 0.1660 | 0.7937 | - |
0.9677 | 30 | - | 0.1286 | 0.8022 | - |
1.2903 | 40 | - | 0.1121 | 0.8011 | - |
1.6129 | 50 | - | 0.0918 | 0.8043 | - |
1.9355 | 60 | - | 0.0842 | 0.8090 | - |
2.2581 | 70 | - | 0.0785 | 0.8081 | - |
2.5806 | 80 | - | 0.0793 | 0.8048 | - |
2.9032 | 90 | - | 0.0736 | 0.8021 | - |
3.2258 | 100 | 0.3116 | 0.0696 | 0.8001 | - |
3.5484 | 110 | - | 0.0667 | 0.8013 | - |
3.8710 | 120 | - | 0.0668 | 0.8029 | - |
4.1935 | 130 | - | 0.0654 | 0.8037 | - |
4.5161 | 140 | - | 0.0647 | 0.8034 | - |
4.8387 | 150 | - | 0.0639 | 0.8034 | - |
-1 | -1 | - | - | - | 0.7498 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wilsonmarciliojr/bertimbau-embed-nli
Base model
neuralmind/bert-base-portuguese-casedEvaluation results
- Pearson Cosine on sts devself-reported0.809
- Spearman Cosine on sts devself-reported0.803
- Pearson Cosine on sts testself-reported0.771
- Spearman Cosine on sts testself-reported0.750