SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli-hard-negatives dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-b512")
# Run inference
sentences = [
'A man reading the paper at a cafe.',
'A man starring at a piece of paper.',
'A man is sitting.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.4452, 0.2729],
# [0.4452, 1.0000, 0.2601],
# [0.2729, 0.2601, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test-768
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
pearson_cosine | 0.8117 |
spearman_cosine | 0.8046 |
Semantic Similarity
- Dataset:
sts-test-512
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
pearson_cosine | 0.8104 |
spearman_cosine | 0.804 |
Semantic Similarity
- Dataset:
sts-test-256
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
pearson_cosine | 0.8071 |
spearman_cosine | 0.8041 |
Semantic Similarity
- Dataset:
sts-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
pearson_cosine | 0.7907 |
spearman_cosine | 0.7932 |
Semantic Similarity
- Dataset:
sts-test-2
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 2 }
Metric | Value |
---|---|
pearson_cosine | 0.3114 |
spearman_cosine | 0.423 |
Training Details
Training Dataset
all-nli-hard-negatives
- Dataset: all-nli-hard-negatives at 9e4fbfd
- Size: 200,266 training samples
- Columns:
anchor
,positive
,negative_1
,negative_2
,negative_3
,negative_4
, andnegative_5
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 type string string string string string string string details - min: 7 tokens
- mean: 15.96 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 10.29 tokens
- max: 22 tokens
- min: 4 tokens
- mean: 9.31 tokens
- max: 24 tokens
- min: 4 tokens
- mean: 9.21 tokens
- max: 24 tokens
- min: 4 tokens
- mean: 9.16 tokens
- max: 24 tokens
- min: 4 tokens
- mean: 9.14 tokens
- max: 22 tokens
- min: 4 tokens
- mean: 9.34 tokens
- max: 27 tokens
- Samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 An older man is drinking orange juice at a restaurant.
A man is drinking juice.
A man seated at a restaurant.
The older man is making food.
the guy in the orange shirt has food in front of him
An elderly person is being served food
A man wears an orange shirt.
A man with blond-hair, and a brown shirt drinking out of a public water fountain.
A blond man drinking water from a fountain.
Man having a drink.
A man is playing in the fountain.
A man is drinking something.
The water fountain is wet.
This man is wet
Two women, holding food carryout containers, hug.
Two women hug each other.
The two woman are holding their arms
Both women have things in their hands.
Two woman standing near each other while one of them holds an item.
Two women carry bags
Two people give each other a hug.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 64, 2 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
all-nli-hard-negatives
- Dataset: all-nli-hard-negatives at 9e4fbfd
- Size: 6,494 evaluation samples
- Columns:
anchor
,positive
,negative_1
,negative_2
,negative_3
,negative_4
, andnegative_5
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 type string string string string string string string details - min: 6 tokens
- mean: 17.84 tokens
- max: 66 tokens
- min: 4 tokens
- mean: 9.91 tokens
- max: 29 tokens
- min: 4 tokens
- mean: 9.22 tokens
- max: 27 tokens
- min: 5 tokens
- mean: 9.38 tokens
- max: 25 tokens
- min: 4 tokens
- mean: 9.28 tokens
- max: 29 tokens
- min: 4 tokens
- mean: 9.35 tokens
- max: 41 tokens
- min: 4 tokens
- mean: 9.54 tokens
- max: 41 tokens
- Samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 Two women are embracing while holding to go packages.
Two woman are holding packages.
A group of women with flowers.
There are women relaxing.
Women are holding a flag
A woman is holding one young children with another standing next to her
An old woman is carrying two pails.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Children are walking.
THe children are playing.
Two kids are playing outside.
The people have clothes on.
Children are playing a game
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A man is giving a presentation.
Goods and Services are sold by undercover agents..
It is called Service Merchandise here.
A street vendor is outside.
I'm happy that I don't work in a store.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 64, 2 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | sts-test-768_spearman_cosine | sts-test-512_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine | sts-test-2_spearman_cosine |
---|---|---|---|---|---|---|
-1 | -1 | 0.8046 | 0.8040 | 0.8041 | 0.7932 | 0.4230 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wilsonmarciliojr/matryoshka-embed-b512
Base model
distilbert/distilroberta-baseDataset used to train wilsonmarciliojr/matryoshka-embed-b512
Evaluation results
- Pearson Cosine on sts test 768self-reported0.812
- Spearman Cosine on sts test 768self-reported0.805
- Pearson Cosine on sts test 512self-reported0.810
- Spearman Cosine on sts test 512self-reported0.804
- Pearson Cosine on sts test 256self-reported0.807
- Spearman Cosine on sts test 256self-reported0.804
- Pearson Cosine on sts test 64self-reported0.791
- Spearman Cosine on sts test 64self-reported0.793
- Pearson Cosine on sts test 2self-reported0.311
- Spearman Cosine on sts test 2self-reported0.423