SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli-knn-hard-negatives dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-knn-b16")
# Run inference
sentences = [
'A baby at the end of a slip and slide at a party',
'A man is playing with a baby on a deck.',
'A baby in a bib is making funny faces at the camera.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.3685, 0.3925],
# [0.3685, 1.0000, 0.3452],
# [0.3925, 0.3452, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test-768
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
pearson_cosine | 0.7119 |
spearman_cosine | 0.6905 |
Semantic Similarity
- Dataset:
sts-test-512
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
pearson_cosine | 0.7104 |
spearman_cosine | 0.6889 |
Semantic Similarity
- Dataset:
sts-test-256
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
pearson_cosine | 0.7092 |
spearman_cosine | 0.6883 |
Semantic Similarity
- Dataset:
sts-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
pearson_cosine | 0.697 |
spearman_cosine | 0.677 |
Semantic Similarity
- Dataset:
sts-test-2
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 2 }
Metric | Value |
---|---|
pearson_cosine | 0.2065 |
spearman_cosine | 0.3003 |
Training Details
Training Dataset
all-nli-knn-hard-negatives
- Dataset: all-nli-knn-hard-negatives at c7814a7
- Size: 3,204,256 training samples
- Columns:
anchor
,positive
,negative_1
,negative_2
,negative_3
,negative_4
, andnegative_5
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 type string string string string string string string details - min: 8 tokens
- mean: 16.58 tokens
- max: 50 tokens
- min: 6 tokens
- mean: 14.56 tokens
- max: 59 tokens
- min: 5 tokens
- mean: 9.62 tokens
- max: 16 tokens
- min: 5 tokens
- mean: 9.24 tokens
- max: 16 tokens
- min: 5 tokens
- mean: 9.16 tokens
- max: 18 tokens
- min: 6 tokens
- mean: 9.43 tokens
- max: 17 tokens
- min: 5 tokens
- mean: 9.41 tokens
- max: 18 tokens
- Samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 An older man is drinking orange juice at a restaurant.
An elderly man is drinking orange juice at a cafe.
An elderly gentleman eats.
A man has many oranges in his baskets.
An elderly person is being served food
A man works at a restaurant
There is a older man.
An older man is drinking orange juice at a restaurant.
A man drinking orange juice while walking.
An elderly gentleman eats.
A man has many oranges in his baskets.
An elderly person is being served food
A man works at a restaurant
There is a older man.
An older man is drinking orange juice at a restaurant.
A man drinks orange juice and walks outside.
An elderly gentleman eats.
A man has many oranges in his baskets.
An elderly person is being served food
A man works at a restaurant
There is a older man.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 64, 2 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
all-nli-knn-hard-negatives
- Dataset: all-nli-knn-hard-negatives at c7814a7
- Size: 103,904 evaluation samples
- Columns:
anchor
,positive
,negative_1
,negative_2
,negative_3
,negative_4
, andnegative_5
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 type string string string string string string string details - min: 9 tokens
- mean: 17.34 tokens
- max: 36 tokens
- min: 6 tokens
- mean: 17.12 tokens
- max: 52 tokens
- min: 5 tokens
- mean: 9.27 tokens
- max: 21 tokens
- min: 6 tokens
- mean: 9.98 tokens
- max: 21 tokens
- min: 5 tokens
- mean: 9.35 tokens
- max: 21 tokens
- min: 5 tokens
- mean: 9.12 tokens
- max: 16 tokens
- min: 6 tokens
- mean: 9.47 tokens
- max: 23 tokens
- Samples:
anchor positive negative_1 negative_2 negative_3 negative_4 negative_5 Two women are embracing while holding to go packages.
Two women in a embrace of greetings, one of them is holding flowers and they are greeting each other of a kiss.
Two women are in the city.
The women each have one head.
Two women are drinking wine and having a conversation.
women carry food on plates
Two people are kissing each other.
Two women are embracing while holding to go packages.
Two women wearing boots and holding bags are talking to each other.
Two women are in the city.
The women each have one head.
Two women are drinking wine and having a conversation.
women carry food on plates
Two people are kissing each other.
Two women are embracing while holding to go packages.
Two women are wet while holding hands with a long building and buses in the background.
Two women are in the city.
The women each have one head.
Two women are drinking wine and having a conversation.
women carry food on plates
Two people are kissing each other.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 64, 2 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | sts-test-768_spearman_cosine | sts-test-512_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine | sts-test-2_spearman_cosine |
---|---|---|---|---|---|---|
-1 | -1 | 0.6905 | 0.6889 | 0.6883 | 0.6770 | 0.3003 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wilsonmarciliojr/matryoshka-embed-knn-b16
Base model
distilbert/distilroberta-baseDataset used to train wilsonmarciliojr/matryoshka-embed-knn-b16
Evaluation results
- Pearson Cosine on sts test 768self-reported0.712
- Spearman Cosine on sts test 768self-reported0.690
- Pearson Cosine on sts test 512self-reported0.710
- Spearman Cosine on sts test 512self-reported0.689
- Pearson Cosine on sts test 256self-reported0.709
- Spearman Cosine on sts test 256self-reported0.688
- Pearson Cosine on sts test 64self-reported0.697
- Spearman Cosine on sts test 64self-reported0.677
- Pearson Cosine on sts test 2self-reported0.207
- Spearman Cosine on sts test 2self-reported0.300