SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-nli")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7319, 0.6196],
# [0.7319, 1.0000, 0.6125],
# [0.6196, 0.6125, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev-768
andsts-test-768
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | sts-dev-768 | sts-test-768 |
---|---|---|
pearson_cosine | 0.8557 | 0.8187 |
spearman_cosine | 0.8616 | 0.8339 |
Semantic Similarity
- Datasets:
sts-dev-512
andsts-test-512
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | sts-dev-512 | sts-test-512 |
---|---|---|
pearson_cosine | 0.8565 | 0.8174 |
spearman_cosine | 0.8629 | 0.8339 |
Semantic Similarity
- Datasets:
sts-dev-256
andsts-test-256
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | sts-dev-256 | sts-test-256 |
---|---|---|
pearson_cosine | 0.852 | 0.8141 |
spearman_cosine | 0.8603 | 0.8328 |
Semantic Similarity
- Datasets:
sts-dev-64
andsts-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | sts-dev-64 | sts-test-64 |
---|---|---|
pearson_cosine | 0.8303 | 0.7975 |
spearman_cosine | 0.8472 | 0.8227 |
Semantic Similarity
- Datasets:
sts-dev-2
andsts-test-2
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 2 }
Metric | sts-dev-2 | sts-test-2 |
---|---|---|
pearson_cosine | 0.3308 | 0.3651 |
spearman_cosine | 0.4464 | 0.4468 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 64, 2 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 64, 2 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 132per_device_eval_batch_size
: 132num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 132per_device_eval_batch_size
: 132per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-2_spearman_cosine | sts-test-768_spearman_cosine | sts-test-512_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine | sts-test-2_spearman_cosine |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0237 | 100 | 20.6039 | 9.0978 | 0.7994 | 0.8086 | 0.8065 | 0.8008 | 0.4457 | - | - | - | - | - |
0.0473 | 200 | 10.3336 | 7.3115 | 0.8260 | 0.8290 | 0.8287 | 0.8162 | 0.4528 | - | - | - | - | - |
0.0710 | 300 | 9.2079 | 6.8495 | 0.8348 | 0.8382 | 0.8373 | 0.8221 | 0.4315 | - | - | - | - | - |
0.0946 | 400 | 8.7776 | 6.7054 | 0.8423 | 0.8436 | 0.8414 | 0.8291 | 0.4517 | - | - | - | - | - |
0.1183 | 500 | 8.553 | 6.5356 | 0.8319 | 0.8328 | 0.8298 | 0.8128 | 0.4012 | - | - | - | - | - |
0.1419 | 600 | 8.2609 | 6.3721 | 0.8448 | 0.8446 | 0.8418 | 0.8279 | 0.4212 | - | - | - | - | - |
0.1656 | 700 | 8.1083 | 6.2386 | 0.8481 | 0.8476 | 0.8445 | 0.8303 | 0.4330 | - | - | - | - | - |
0.1893 | 800 | 8.0059 | 6.1114 | 0.8463 | 0.8474 | 0.8440 | 0.8295 | 0.4177 | - | - | - | - | - |
0.2129 | 900 | 7.7804 | 6.1065 | 0.8499 | 0.8501 | 0.8475 | 0.8325 | 0.4324 | - | - | - | - | - |
0.2366 | 1000 | 7.6856 | 6.0044 | 0.8476 | 0.8481 | 0.8453 | 0.8276 | 0.4243 | - | - | - | - | - |
0.2602 | 1100 | 7.486 | 5.9960 | 0.8513 | 0.8522 | 0.8499 | 0.8340 | 0.4227 | - | - | - | - | - |
0.2839 | 1200 | 7.4374 | 5.9497 | 0.8540 | 0.8547 | 0.8523 | 0.8370 | 0.4529 | - | - | - | - | - |
0.3075 | 1300 | 7.3986 | 5.8909 | 0.8524 | 0.8536 | 0.8502 | 0.8332 | 0.4419 | - | - | - | - | - |
0.3312 | 1400 | 7.3142 | 5.8699 | 0.8573 | 0.8577 | 0.8558 | 0.8403 | 0.4575 | - | - | - | - | - |
0.3549 | 1500 | 7.2417 | 5.8065 | 0.8567 | 0.8575 | 0.8552 | 0.8396 | 0.4268 | - | - | - | - | - |
0.3785 | 1600 | 7.1856 | 5.8084 | 0.8551 | 0.8562 | 0.8543 | 0.8401 | 0.4423 | - | - | - | - | - |
0.4022 | 1700 | 7.0993 | 5.7610 | 0.8589 | 0.8593 | 0.8571 | 0.8438 | 0.4239 | - | - | - | - | - |
0.4258 | 1800 | 6.946 | 5.7958 | 0.8560 | 0.8569 | 0.8549 | 0.8407 | 0.4126 | - | - | - | - | - |
0.4495 | 1900 | 7.0295 | 5.7326 | 0.8610 | 0.8620 | 0.8593 | 0.8444 | 0.4325 | - | - | - | - | - |
0.4731 | 2000 | 7.0014 | 5.7051 | 0.8581 | 0.8591 | 0.8566 | 0.8427 | 0.4073 | - | - | - | - | - |
0.4968 | 2100 | 6.9669 | 5.6948 | 0.8570 | 0.8584 | 0.8558 | 0.8423 | 0.4482 | - | - | - | - | - |
0.5205 | 2200 | 6.9038 | 5.6660 | 0.8586 | 0.8594 | 0.8575 | 0.8446 | 0.4390 | - | - | - | - | - |
0.5441 | 2300 | 6.8185 | 5.6741 | 0.8600 | 0.8604 | 0.8581 | 0.8448 | 0.4463 | - | - | - | - | - |
0.5678 | 2400 | 6.7464 | 5.6465 | 0.8548 | 0.8560 | 0.8536 | 0.8405 | 0.4499 | - | - | - | - | - |
0.5914 | 2500 | 6.7982 | 5.6309 | 0.8571 | 0.8576 | 0.8551 | 0.8437 | 0.4337 | - | - | - | - | - |
0.6151 | 2600 | 6.7341 | 5.5807 | 0.8587 | 0.8598 | 0.8571 | 0.8445 | 0.4372 | - | - | - | - | - |
0.6388 | 2700 | 6.6385 | 5.6211 | 0.8596 | 0.8610 | 0.8578 | 0.8442 | 0.4508 | - | - | - | - | - |
0.6624 | 2800 | 6.6346 | 5.5926 | 0.8601 | 0.8617 | 0.8590 | 0.8464 | 0.4329 | - | - | - | - | - |
0.6861 | 2900 | 6.5412 | 5.5911 | 0.8604 | 0.8613 | 0.8590 | 0.8476 | 0.4491 | - | - | - | - | - |
0.7097 | 3000 | 6.5813 | 5.5587 | 0.8614 | 0.8630 | 0.8605 | 0.8477 | 0.4588 | - | - | - | - | - |
0.7334 | 3100 | 6.6037 | 5.5550 | 0.8608 | 0.8619 | 0.8597 | 0.8466 | 0.4547 | - | - | - | - | - |
0.7570 | 3200 | 6.5861 | 5.5688 | 0.8592 | 0.8602 | 0.8569 | 0.8438 | 0.4553 | - | - | - | - | - |
0.7807 | 3300 | 6.5861 | 5.5339 | 0.8617 | 0.8629 | 0.8606 | 0.8480 | 0.4580 | - | - | - | - | - |
0.8044 | 3400 | 6.5206 | 5.5185 | 0.8612 | 0.8625 | 0.8603 | 0.8476 | 0.4583 | - | - | - | - | - |
0.8280 | 3500 | 6.457 | 5.5259 | 0.8603 | 0.8619 | 0.8595 | 0.8463 | 0.4608 | - | - | - | - | - |
0.8517 | 3600 | 6.5059 | 5.5100 | 0.8622 | 0.8636 | 0.8611 | 0.8474 | 0.4625 | - | - | - | - | - |
0.8753 | 3700 | 6.463 | 5.5012 | 0.8621 | 0.8636 | 0.8612 | 0.8482 | 0.4551 | - | - | - | - | - |
0.8990 | 3800 | 6.3619 | 5.5010 | 0.8612 | 0.8625 | 0.8600 | 0.8469 | 0.4573 | - | - | - | - | - |
0.9226 | 3900 | 6.4302 | 5.4862 | 0.8627 | 0.8641 | 0.8615 | 0.8488 | 0.4542 | - | - | - | - | - |
0.9463 | 4000 | 6.3869 | 5.4753 | 0.8616 | 0.8630 | 0.8604 | 0.8473 | 0.4436 | - | - | - | - | - |
0.9700 | 4100 | 6.3654 | 5.4740 | 0.8618 | 0.8633 | 0.8606 | 0.8477 | 0.4454 | - | - | - | - | - |
0.9936 | 4200 | 6.1764 | 5.4702 | 0.8616 | 0.8629 | 0.8603 | 0.8472 | 0.4464 | - | - | - | - | - |
-1 | -1 | - | - | - | - | - | - | - | 0.8339 | 0.8339 | 0.8328 | 0.8227 | 0.4468 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wilsonmarciliojr/matryoshka-embed-nli
Base model
distilbert/distilroberta-baseDataset used to train wilsonmarciliojr/matryoshka-embed-nli
Evaluation results
- Pearson Cosine on sts dev 768self-reported0.856
- Spearman Cosine on sts dev 768self-reported0.862
- Pearson Cosine on sts dev 512self-reported0.856
- Spearman Cosine on sts dev 512self-reported0.863
- Pearson Cosine on sts dev 256self-reported0.852
- Spearman Cosine on sts dev 256self-reported0.860
- Pearson Cosine on sts dev 64self-reported0.830
- Spearman Cosine on sts dev 64self-reported0.847
- Pearson Cosine on sts dev 2self-reported0.331
- Spearman Cosine on sts dev 2self-reported0.446