SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: distilbert/distilroberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-nli")
# Run inference
sentences = [
    'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
    'A worker is looking out of a manhole.',
    'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7319, 0.6196],
#         [0.7319, 1.0000, 0.6125],
#         [0.6196, 0.6125, 1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric sts-dev-768 sts-test-768
pearson_cosine 0.8557 0.8187
spearman_cosine 0.8616 0.8339

Semantic Similarity

Metric sts-dev-512 sts-test-512
pearson_cosine 0.8565 0.8174
spearman_cosine 0.8629 0.8339

Semantic Similarity

Metric sts-dev-256 sts-test-256
pearson_cosine 0.852 0.8141
spearman_cosine 0.8603 0.8328

Semantic Similarity

Metric sts-dev-64 sts-test-64
pearson_cosine 0.8303 0.7975
spearman_cosine 0.8472 0.8227

Semantic Similarity

Metric sts-dev-2 sts-test-2
pearson_cosine 0.3308 0.3651
spearman_cosine 0.4464 0.4468

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 557,850 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.38 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 12.8 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            64,
            2
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 18.02 tokens
    • max: 66 tokens
    • min: 5 tokens
    • mean: 9.81 tokens
    • max: 29 tokens
    • min: 5 tokens
    • mean: 10.37 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            64,
            2
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 132
  • per_device_eval_batch_size: 132
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 132
  • per_device_eval_batch_size: 132
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss sts-dev-768_spearman_cosine sts-dev-512_spearman_cosine sts-dev-256_spearman_cosine sts-dev-64_spearman_cosine sts-dev-2_spearman_cosine sts-test-768_spearman_cosine sts-test-512_spearman_cosine sts-test-256_spearman_cosine sts-test-64_spearman_cosine sts-test-2_spearman_cosine
0.0237 100 20.6039 9.0978 0.7994 0.8086 0.8065 0.8008 0.4457 - - - - -
0.0473 200 10.3336 7.3115 0.8260 0.8290 0.8287 0.8162 0.4528 - - - - -
0.0710 300 9.2079 6.8495 0.8348 0.8382 0.8373 0.8221 0.4315 - - - - -
0.0946 400 8.7776 6.7054 0.8423 0.8436 0.8414 0.8291 0.4517 - - - - -
0.1183 500 8.553 6.5356 0.8319 0.8328 0.8298 0.8128 0.4012 - - - - -
0.1419 600 8.2609 6.3721 0.8448 0.8446 0.8418 0.8279 0.4212 - - - - -
0.1656 700 8.1083 6.2386 0.8481 0.8476 0.8445 0.8303 0.4330 - - - - -
0.1893 800 8.0059 6.1114 0.8463 0.8474 0.8440 0.8295 0.4177 - - - - -
0.2129 900 7.7804 6.1065 0.8499 0.8501 0.8475 0.8325 0.4324 - - - - -
0.2366 1000 7.6856 6.0044 0.8476 0.8481 0.8453 0.8276 0.4243 - - - - -
0.2602 1100 7.486 5.9960 0.8513 0.8522 0.8499 0.8340 0.4227 - - - - -
0.2839 1200 7.4374 5.9497 0.8540 0.8547 0.8523 0.8370 0.4529 - - - - -
0.3075 1300 7.3986 5.8909 0.8524 0.8536 0.8502 0.8332 0.4419 - - - - -
0.3312 1400 7.3142 5.8699 0.8573 0.8577 0.8558 0.8403 0.4575 - - - - -
0.3549 1500 7.2417 5.8065 0.8567 0.8575 0.8552 0.8396 0.4268 - - - - -
0.3785 1600 7.1856 5.8084 0.8551 0.8562 0.8543 0.8401 0.4423 - - - - -
0.4022 1700 7.0993 5.7610 0.8589 0.8593 0.8571 0.8438 0.4239 - - - - -
0.4258 1800 6.946 5.7958 0.8560 0.8569 0.8549 0.8407 0.4126 - - - - -
0.4495 1900 7.0295 5.7326 0.8610 0.8620 0.8593 0.8444 0.4325 - - - - -
0.4731 2000 7.0014 5.7051 0.8581 0.8591 0.8566 0.8427 0.4073 - - - - -
0.4968 2100 6.9669 5.6948 0.8570 0.8584 0.8558 0.8423 0.4482 - - - - -
0.5205 2200 6.9038 5.6660 0.8586 0.8594 0.8575 0.8446 0.4390 - - - - -
0.5441 2300 6.8185 5.6741 0.8600 0.8604 0.8581 0.8448 0.4463 - - - - -
0.5678 2400 6.7464 5.6465 0.8548 0.8560 0.8536 0.8405 0.4499 - - - - -
0.5914 2500 6.7982 5.6309 0.8571 0.8576 0.8551 0.8437 0.4337 - - - - -
0.6151 2600 6.7341 5.5807 0.8587 0.8598 0.8571 0.8445 0.4372 - - - - -
0.6388 2700 6.6385 5.6211 0.8596 0.8610 0.8578 0.8442 0.4508 - - - - -
0.6624 2800 6.6346 5.5926 0.8601 0.8617 0.8590 0.8464 0.4329 - - - - -
0.6861 2900 6.5412 5.5911 0.8604 0.8613 0.8590 0.8476 0.4491 - - - - -
0.7097 3000 6.5813 5.5587 0.8614 0.8630 0.8605 0.8477 0.4588 - - - - -
0.7334 3100 6.6037 5.5550 0.8608 0.8619 0.8597 0.8466 0.4547 - - - - -
0.7570 3200 6.5861 5.5688 0.8592 0.8602 0.8569 0.8438 0.4553 - - - - -
0.7807 3300 6.5861 5.5339 0.8617 0.8629 0.8606 0.8480 0.4580 - - - - -
0.8044 3400 6.5206 5.5185 0.8612 0.8625 0.8603 0.8476 0.4583 - - - - -
0.8280 3500 6.457 5.5259 0.8603 0.8619 0.8595 0.8463 0.4608 - - - - -
0.8517 3600 6.5059 5.5100 0.8622 0.8636 0.8611 0.8474 0.4625 - - - - -
0.8753 3700 6.463 5.5012 0.8621 0.8636 0.8612 0.8482 0.4551 - - - - -
0.8990 3800 6.3619 5.5010 0.8612 0.8625 0.8600 0.8469 0.4573 - - - - -
0.9226 3900 6.4302 5.4862 0.8627 0.8641 0.8615 0.8488 0.4542 - - - - -
0.9463 4000 6.3869 5.4753 0.8616 0.8630 0.8604 0.8473 0.4436 - - - - -
0.9700 4100 6.3654 5.4740 0.8618 0.8633 0.8606 0.8477 0.4454 - - - - -
0.9936 4200 6.1764 5.4702 0.8616 0.8629 0.8603 0.8472 0.4464 - - - - -
-1 -1 - - - - - - - 0.8339 0.8339 0.8328 0.8227 0.4468

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.1
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
82.1M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for wilsonmarciliojr/matryoshka-embed-nli

Finetuned
(641)
this model

Dataset used to train wilsonmarciliojr/matryoshka-embed-nli

Evaluation results