bert-finetuned-sem_eval-english

This model is a fine-tuned version of bert-base-uncased on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3129
  • F1: 0.7081
  • Roc Auc: 0.8031
  • Accuracy: 0.2675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.4084 1.0 855 0.3155 0.6932 0.7890 0.2754
0.2826 2.0 1710 0.3029 0.6965 0.7877 0.2765
0.2412 3.0 2565 0.3082 0.7081 0.8021 0.2731
0.213 4.0 3420 0.3125 0.6992 0.7960 0.2619
0.1924 5.0 4275 0.3129 0.7081 0.8031 0.2675

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
20
Safetensors
Model size
109M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for winain7788/bert-finetuned-sem_eval-english

Finetuned
(5273)
this model

Dataset used to train winain7788/bert-finetuned-sem_eval-english

Spaces using winain7788/bert-finetuned-sem_eval-english 43

Evaluation results