model_sbs

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("wongzien2000/model_sbs")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 1396
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 training - just - greg - videos - people 57 -1_training_just_greg_videos
0 sets - muscle - volume - week - training 151 0_sets_muscle_volume_week
1 bench - press - shoulder - ohp - bar 583 1_bench_press_shoulder_ohp
2 greg - great - answer - thanks - thank 222 2_greg_great_answer_thanks
3 mike - dr - dr mike - eric - dr pak 187 3_mike_dr_dr mike_eric
4 science - based - science based - studies - brad 135 4_science_based_science based_studies
5 music - background - background music - audio - merrily 61 5_music_background_background music_audio

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.2
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.4.1
  • Transformers: 4.50.2
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.11.11
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support