wolf_topic_model_custom

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("wongzien2000/wolf_topic_model_custom")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 8
  • Number of training documents: 2933
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 tier - like - just - milo - video 114 -1_tier_like_just_milo
0 cable - exercise - lateral - like - delts 979 0_cable_exercise_lateral_like
1 squats - leg - squat - pistol - sissy 986 1_squats_leg_squat_pistol
2 mike - dr - dr mike - darth - like 212 2_mike_dr_dr mike_darth
3 deadlift - deadlifts - hypertrophy - stretch - strength 212 3_deadlift_deadlifts_hypertrophy_stretch
4 video - wolf - great - dr - channel 151 4_video_wolf_great_dr
5 exercises - video - studies - science - exercise 149 5_exercises_video_studies_science
6 week - protein - sets - fat - muscle 130 6_week_protein_sets_fat

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 5
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.2
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.4.1
  • Transformers: 4.50.2
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.11.11
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support