output-itemHalfTax-wd0.1
This model is a fine-tuned version of deepseek-ai/deepseek-math-7b-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0475
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8425 | 0.01 | 1 | 0.4687 |
0.8496 | 0.01 | 2 | 0.4640 |
0.819 | 0.02 | 3 | 0.4579 |
0.8173 | 0.03 | 4 | 0.4532 |
0.8297 | 0.03 | 5 | 0.4495 |
0.8014 | 0.04 | 6 | 0.4447 |
0.7981 | 0.04 | 7 | 0.4399 |
0.7716 | 0.05 | 8 | 0.4375 |
0.6996 | 0.06 | 9 | 0.4332 |
0.6631 | 0.06 | 10 | 0.4302 |
0.6596 | 0.07 | 11 | 0.4247 |
0.6887 | 0.08 | 12 | 0.4221 |
0.6373 | 0.08 | 13 | 0.4180 |
0.6536 | 0.09 | 14 | 0.4161 |
0.6112 | 0.1 | 15 | 0.4102 |
0.6113 | 0.1 | 16 | 0.4072 |
0.5427 | 0.11 | 17 | 0.4041 |
0.5434 | 0.12 | 18 | 0.4005 |
0.5098 | 0.12 | 19 | 0.3955 |
0.5567 | 0.13 | 20 | 0.3914 |
0.4984 | 0.13 | 21 | 0.3889 |
0.5414 | 0.14 | 22 | 0.3852 |
0.4851 | 0.15 | 23 | 0.3818 |
0.4599 | 0.15 | 24 | 0.3769 |
0.4423 | 0.16 | 25 | 0.3736 |
0.4562 | 0.17 | 26 | 0.3711 |
0.4359 | 0.17 | 27 | 0.3677 |
0.4182 | 0.18 | 28 | 0.3631 |
0.4302 | 0.19 | 29 | 0.3612 |
0.4294 | 0.19 | 30 | 0.3556 |
0.4169 | 0.2 | 31 | 0.3527 |
0.3764 | 0.2 | 32 | 0.3483 |
0.3773 | 0.21 | 33 | 0.3451 |
0.3611 | 0.22 | 34 | 0.3423 |
0.3524 | 0.22 | 35 | 0.3380 |
0.3528 | 0.23 | 36 | 0.3337 |
0.3666 | 0.24 | 37 | 0.3306 |
0.3536 | 0.24 | 38 | 0.3266 |
0.3812 | 0.25 | 39 | 0.3223 |
0.2976 | 0.26 | 40 | 0.3191 |
0.2805 | 0.26 | 41 | 0.3157 |
0.2739 | 0.27 | 42 | 0.3115 |
0.2994 | 0.28 | 43 | 0.3089 |
0.2864 | 0.28 | 44 | 0.3031 |
0.2745 | 0.29 | 45 | 0.3003 |
0.2666 | 0.29 | 46 | 0.2968 |
0.3109 | 0.3 | 47 | 0.2914 |
0.2603 | 0.31 | 48 | 0.2873 |
0.2761 | 0.31 | 49 | 0.2821 |
0.2566 | 0.32 | 50 | 0.2792 |
0.2637 | 0.33 | 51 | 0.2758 |
0.2388 | 0.33 | 52 | 0.2706 |
0.2474 | 0.34 | 53 | 0.2651 |
0.2462 | 0.35 | 54 | 0.2607 |
0.2617 | 0.35 | 55 | 0.2567 |
0.2387 | 0.36 | 56 | 0.2513 |
0.2171 | 0.36 | 57 | 0.2482 |
0.2324 | 0.37 | 58 | 0.2428 |
0.227 | 0.38 | 59 | 0.2384 |
0.2366 | 0.38 | 60 | 0.2332 |
0.2174 | 0.39 | 61 | 0.2288 |
0.2083 | 0.4 | 62 | 0.2237 |
0.1935 | 0.4 | 63 | 0.2198 |
0.2141 | 0.41 | 64 | 0.2152 |
0.2044 | 0.42 | 65 | 0.2111 |
0.2061 | 0.42 | 66 | 0.2064 |
0.2005 | 0.43 | 67 | 0.2011 |
0.1895 | 0.44 | 68 | 0.1944 |
0.1823 | 0.44 | 69 | 0.1902 |
0.1763 | 0.45 | 70 | 0.1874 |
0.1897 | 0.45 | 71 | 0.1814 |
0.1853 | 0.46 | 72 | 0.1764 |
0.1674 | 0.47 | 73 | 0.1706 |
0.1642 | 0.47 | 74 | 0.1648 |
0.1677 | 0.48 | 75 | 0.1604 |
0.1551 | 0.49 | 76 | 0.1544 |
0.1457 | 0.49 | 77 | 0.1486 |
0.1497 | 0.5 | 78 | 0.1434 |
0.1389 | 0.51 | 79 | 0.1374 |
0.1396 | 0.51 | 80 | 0.1325 |
0.1297 | 0.52 | 81 | 0.1266 |
0.1298 | 0.52 | 82 | 0.1211 |
0.1162 | 0.53 | 83 | 0.1164 |
0.13 | 0.54 | 84 | 0.1127 |
0.1207 | 0.54 | 85 | 0.1085 |
0.1165 | 0.55 | 86 | 0.1039 |
0.1088 | 0.56 | 87 | 0.1012 |
0.1082 | 0.56 | 88 | 0.0969 |
0.109 | 0.57 | 89 | 0.0952 |
0.1102 | 0.58 | 90 | 0.0924 |
0.1026 | 0.58 | 91 | 0.0891 |
0.1058 | 0.59 | 92 | 0.0875 |
0.0973 | 0.6 | 93 | 0.0861 |
0.0963 | 0.6 | 94 | 0.0859 |
0.0941 | 0.61 | 95 | 0.0838 |
0.0983 | 0.61 | 96 | 0.0824 |
0.0884 | 0.62 | 97 | 0.0812 |
0.0855 | 0.63 | 98 | 0.0798 |
0.0875 | 0.63 | 99 | 0.0781 |
0.0833 | 0.64 | 100 | 0.0766 |
0.0836 | 0.65 | 101 | 0.0757 |
0.0809 | 0.65 | 102 | 0.0745 |
0.0839 | 0.66 | 103 | 0.0731 |
0.0748 | 0.67 | 104 | 0.0717 |
0.0779 | 0.67 | 105 | 0.0710 |
0.0768 | 0.68 | 106 | 0.0705 |
0.0794 | 0.68 | 107 | 0.0693 |
0.079 | 0.69 | 108 | 0.0679 |
0.0808 | 0.7 | 109 | 0.0667 |
0.0785 | 0.7 | 110 | 0.0658 |
0.0669 | 0.71 | 111 | 0.0649 |
0.0715 | 0.72 | 112 | 0.0640 |
0.0751 | 0.72 | 113 | 0.0632 |
0.0727 | 0.73 | 114 | 0.0626 |
0.0725 | 0.74 | 115 | 0.0625 |
0.0665 | 0.74 | 116 | 0.0614 |
0.0627 | 0.75 | 117 | 0.0605 |
0.0681 | 0.76 | 118 | 0.0597 |
0.0673 | 0.76 | 119 | 0.0593 |
0.0741 | 0.77 | 120 | 0.0592 |
0.0686 | 0.77 | 121 | 0.0584 |
0.0618 | 0.78 | 122 | 0.0584 |
0.065 | 0.79 | 123 | 0.0574 |
0.061 | 0.79 | 124 | 0.0572 |
0.0685 | 0.8 | 125 | 0.0571 |
0.0621 | 0.81 | 126 | 0.0560 |
0.0636 | 0.81 | 127 | 0.0558 |
0.0581 | 0.82 | 128 | 0.0550 |
0.0576 | 0.83 | 129 | 0.0547 |
0.0628 | 0.83 | 130 | 0.0544 |
0.056 | 0.84 | 131 | 0.0542 |
0.0572 | 0.84 | 132 | 0.0536 |
0.0605 | 0.85 | 133 | 0.0529 |
0.0626 | 0.86 | 134 | 0.0520 |
0.0566 | 0.86 | 135 | 0.0517 |
0.0575 | 0.87 | 136 | 0.0519 |
0.0571 | 0.88 | 137 | 0.0514 |
0.0594 | 0.88 | 138 | 0.0510 |
0.0528 | 0.89 | 139 | 0.0513 |
0.0507 | 0.9 | 140 | 0.0508 |
0.0587 | 0.9 | 141 | 0.0503 |
0.0558 | 0.91 | 142 | 0.0504 |
0.0538 | 0.92 | 143 | 0.0500 |
0.0509 | 0.92 | 144 | 0.0509 |
0.0538 | 0.93 | 145 | 0.0504 |
0.0524 | 0.93 | 146 | 0.0498 |
0.059 | 0.94 | 147 | 0.0496 |
0.0508 | 0.95 | 148 | 0.0494 |
0.0563 | 0.95 | 149 | 0.0491 |
0.0472 | 0.96 | 150 | 0.0484 |
0.0526 | 0.97 | 151 | 0.0482 |
0.0525 | 0.97 | 152 | 0.0482 |
0.0483 | 0.98 | 153 | 0.0478 |
0.0541 | 0.99 | 154 | 0.0483 |
0.0521 | 0.99 | 155 | 0.0474 |
0.0556 | 1.0 | 156 | 0.0475 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for woody72/output-itemHalfTax-wd0.1
Base model
deepseek-ai/deepseek-math-7b-base