TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM
Updates
- 2025-03-17: TimeZero initial release! Code and evaluation scripts are now available.
- 2025-03-17: TimeZero achieves SOTA performance on Charades-STA!
Overview
TimeZero is a reasoning-guided Large Vision-Language Model (LVLM) for Temporal Video Grounding (TVG). It excels at identifying temporal segments within videos that correspond to a given natural language query. TimeZero achieves this entirely through a reinforcement learning approach that allows the model to reason about video-language relationships during inference.
Key Features:
- Reinforcement Learning Training: TimeZero is trained entirely using reinforcement learning, enhancing its ability to generate accurate temporal boundaries.
- Test-Time Reasoning: The model exhibits emergent reasoning capabilities during inference, generating a chain of thought to justify its segment predictions.
- SOTA Performance: TimeZero sets a new SOTA on the Charades-STA benchmark.
This README provides an overview of TimeZero, including setup instructions, the training process, and evaluation guidelines.
Example:
Training Visualization:
Setup
conda create -n timezero python=3.11
conda env create -f environment.yml
conda activate timezero
Training
TimeZero training involves the following steps:
Data Preprocessing:
Download the dataset Charades-STA, ActivityNet
Before training, you need to preprocess the video data.
bash preprocess_video.sh
Specify the path to the Charades-STA dataset (video files, annotations, etc.).
GRPO Training:
cd scripts bash run_grpo_video.sh
run_grpo_video.sh
#!/bin/bash export DEBUG_MODE="false" # Set to "true" for verbose logging during training. export LOG_PATH="./debug_log.txt" torchrun --nproc_per_node="4" \ --nnodes="1" \ --node_rank="0" \ --master_addr="127.0.0.1" \ --master_port="12361" \ src/open_r1/grpo_video.py \ --deepspeed scripts/zero3_offload.json \ --output_dir $OUTDIR \ --model_name_or_path mllm/Qwen2.5-VL-7B-Instruct \ --preprocessed_data_path ./Charades_preprocessed_data_maxpix_3584 \ --train_data_path ./Charades/charades_annotation/train.json \ --eval_data_path ./Charades/charades_annotation/val.json \ --video_folder ./Charades/Charades_v1 \ --dataset_name xxx \ --max_prompt_length 8192 \ --max_completion_length 1024 \ --num_generations 8 \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 2 \ --logging_steps 1 \ --bf16 \ --torch_dtype bfloat16 \ --data_seed 42 \ --gradient_checkpointing true \ --attn_implementation flash_attention_2 \ --num_train_epochs 2 \ --run_name $WANDB_NAME \ --report_to wandb \ --save_steps 50 \ --save_only_model true
Evaluation
After training, evaluate your model's performance:
bash scripts/evaluate.sh # Use evaluate.sh for evaluation.
evaluate.sh
python evaluate.py --model_base <path_to_your_trained_model> --dataset <charades or activitynet>
The evaluation script (
evaluate.py
) needs to be implemented to load your model, process the test data, and calculate the relevant metrics ([email protected], [email protected], [email protected], etc.).
Results
- Charades-STA (Finetuned)
TimeZero outperforms previous state-of-the-art methods by a large margin.
Method | Type | [email protected] | [email protected] | [email protected] |
---|---|---|---|---|
EaTR (VLP sota) | VLP | - | 68.4 | 44.9 |
TimeSuite (LVLM sota) | SFT | 79.4 | 67.1 | 43.0 |
TimeZero (ours) | RL | 83.3 | 72.5 | 47.9 |
- ActivityNet (Finetuned)
TimeZero surpasses previous state-of-the-art LVLMs.
Method | Type | [email protected] | [email protected] | [email protected] |
---|---|---|---|---|
EaTR (VLP sota) | VLP | - | 58.18 | 37.64 |
TRACE (LVLM sota) | SFT | 54.0 | 37.7 | 24.0 |
TimeZero (ours) | RL | 68.6 | 47.3 | 26.9 |
Acknowledgements
We thank the authors of the following projects for their contributions:
Citation
@article{wang2025timezero,
title={TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM},
author={Wang, Ye and Xu, Boshen and Yue, Zihao and Xiao, Zihan and Wang, Ziheng and Zhang, Liang and Yang, Dingyi and Wang, Wenxuan and Jin, Qin},
booktitle={arxiv},
year={2025}
}
- Downloads last month
- 13