SentenceTransformer based on x2bee/ModernBERT-SimCSE-multitask_v03
This is a sentence-transformers model finetuned from x2bee/ModernBERT-SimCSE-multitask_v03 on the misc_sts_pairs_v2_kor_kosimcse dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: x2bee/ModernBERT-SimCSE-multitask_v03
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("x2bee/ModernBERT-SimCSE-multitask_v03-beta")
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8352 |
| spearman_cosine |
0.8406 |
| pearson_euclidean |
0.8257 |
| spearman_euclidean |
0.8336 |
| pearson_manhattan |
0.8261 |
| spearman_manhattan |
0.8341 |
| pearson_dot |
0.7368 |
| spearman_dot |
0.7201 |
| pearson_max |
0.8352 |
| spearman_max |
0.8406 |
Training Details
Training Dataset
misc_sts_pairs_v2_kor_kosimcse
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir: True
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 8
learning_rate: 8e-05
num_train_epochs: 2.0
warmup_ratio: 0.2
push_to_hub: True
hub_model_id: x2bee/ModernBERT-SimCSE-multitask_v03-beta
hub_strategy: checkpoint
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: True
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 8
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 8e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 2.0
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.2
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: x2bee/ModernBERT-SimCSE-multitask_v03-beta
hub_strategy: checkpoint
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
sts_dev_spearman_max |
| 0.0028 |
10 |
0.0216 |
- |
- |
| 0.0057 |
20 |
0.0204 |
- |
- |
| 0.0085 |
30 |
0.0194 |
- |
- |
| 0.0114 |
40 |
0.0195 |
- |
- |
| 0.0142 |
50 |
0.0182 |
- |
- |
| 0.0171 |
60 |
0.0161 |
- |
- |
| 0.0199 |
70 |
0.015 |
- |
- |
| 0.0228 |
80 |
0.0153 |
- |
- |
| 0.0256 |
90 |
0.0137 |
- |
- |
| 0.0285 |
100 |
0.014 |
- |
- |
| 0.0313 |
110 |
0.0122 |
- |
- |
| 0.0341 |
120 |
0.0114 |
- |
- |
| 0.0370 |
130 |
0.0109 |
- |
- |
| 0.0398 |
140 |
0.0097 |
- |
- |
| 0.0427 |
150 |
0.0085 |
- |
- |
| 0.0455 |
160 |
0.0084 |
- |
- |
| 0.0484 |
170 |
0.0083 |
- |
- |
| 0.0512 |
180 |
0.0078 |
- |
- |
| 0.0541 |
190 |
0.008 |
- |
- |
| 0.0569 |
200 |
0.0073 |
- |
- |
| 0.0597 |
210 |
0.0079 |
- |
- |
| 0.0626 |
220 |
0.0073 |
- |
- |
| 0.0654 |
230 |
0.0079 |
- |
- |
| 0.0683 |
240 |
0.0068 |
- |
- |
| 0.0711 |
250 |
0.0068 |
0.0333 |
0.8229 |
| 0.0740 |
260 |
0.0073 |
- |
- |
| 0.0768 |
270 |
0.0077 |
- |
- |
| 0.0797 |
280 |
0.0067 |
- |
- |
| 0.0825 |
290 |
0.007 |
- |
- |
| 0.0854 |
300 |
0.0065 |
- |
- |
| 0.0882 |
310 |
0.0072 |
- |
- |
| 0.0910 |
320 |
0.0068 |
- |
- |
| 0.0939 |
330 |
0.0064 |
- |
- |
| 0.0967 |
340 |
0.0074 |
- |
- |
| 0.0996 |
350 |
0.0071 |
- |
- |
| 0.1024 |
360 |
0.0065 |
- |
- |
| 0.1053 |
370 |
0.0067 |
- |
- |
| 0.1081 |
380 |
0.0063 |
- |
- |
| 0.1110 |
390 |
0.0062 |
- |
- |
| 0.1138 |
400 |
0.0068 |
- |
- |
| 0.1166 |
410 |
0.0064 |
- |
- |
| 0.1195 |
420 |
0.0064 |
- |
- |
| 0.1223 |
430 |
0.0064 |
- |
- |
| 0.1252 |
440 |
0.0074 |
- |
- |
| 0.1280 |
450 |
0.0069 |
- |
- |
| 0.1309 |
460 |
0.0065 |
- |
- |
| 0.1337 |
470 |
0.0067 |
- |
- |
| 0.1366 |
480 |
0.0068 |
- |
- |
| 0.1394 |
490 |
0.0057 |
- |
- |
| 0.1423 |
500 |
0.0065 |
0.0343 |
0.8284 |
| 0.1451 |
510 |
0.0069 |
- |
- |
| 0.1479 |
520 |
0.0068 |
- |
- |
| 0.1508 |
530 |
0.0065 |
- |
- |
| 0.1536 |
540 |
0.0065 |
- |
- |
| 0.1565 |
550 |
0.0063 |
- |
- |
| 0.1593 |
560 |
0.0058 |
- |
- |
| 0.1622 |
570 |
0.0064 |
- |
- |
| 0.1650 |
580 |
0.0062 |
- |
- |
| 0.1679 |
590 |
0.0061 |
- |
- |
| 0.1707 |
600 |
0.0062 |
- |
- |
| 0.1735 |
610 |
0.0057 |
- |
- |
| 0.1764 |
620 |
0.0066 |
- |
- |
| 0.1792 |
630 |
0.0061 |
- |
- |
| 0.1821 |
640 |
0.0054 |
- |
- |
| 0.1849 |
650 |
0.0066 |
- |
- |
| 0.1878 |
660 |
0.0059 |
- |
- |
| 0.1906 |
670 |
0.0063 |
- |
- |
| 0.1935 |
680 |
0.0065 |
- |
- |
| 0.1963 |
690 |
0.0065 |
- |
- |
| 0.1992 |
700 |
0.0058 |
- |
- |
| 0.2020 |
710 |
0.006 |
- |
- |
| 0.2048 |
720 |
0.0062 |
- |
- |
| 0.2077 |
730 |
0.0058 |
- |
- |
| 0.2105 |
740 |
0.0058 |
- |
- |
| 0.2134 |
750 |
0.0056 |
0.0356 |
0.8302 |
| 0.2162 |
760 |
0.0067 |
- |
- |
| 0.2191 |
770 |
0.0063 |
- |
- |
| 0.2219 |
780 |
0.0063 |
- |
- |
| 0.2248 |
790 |
0.0063 |
- |
- |
| 0.2276 |
800 |
0.0056 |
- |
- |
| 0.2304 |
810 |
0.0058 |
- |
- |
| 0.2333 |
820 |
0.0053 |
- |
- |
| 0.2361 |
830 |
0.0057 |
- |
- |
| 0.2390 |
840 |
0.0055 |
- |
- |
| 0.2418 |
850 |
0.0054 |
- |
- |
| 0.2447 |
860 |
0.0065 |
- |
- |
| 0.2475 |
870 |
0.0054 |
- |
- |
| 0.2504 |
880 |
0.0051 |
- |
- |
| 0.2532 |
890 |
0.0057 |
- |
- |
| 0.2561 |
900 |
0.0056 |
- |
- |
| 0.2589 |
910 |
0.0055 |
- |
- |
| 0.2617 |
920 |
0.0051 |
- |
- |
| 0.2646 |
930 |
0.0055 |
- |
- |
| 0.2674 |
940 |
0.0059 |
- |
- |
| 0.2703 |
950 |
0.005 |
- |
- |
| 0.2731 |
960 |
0.0058 |
- |
- |
| 0.2760 |
970 |
0.005 |
- |
- |
| 0.2788 |
980 |
0.0055 |
- |
- |
| 0.2817 |
990 |
0.0054 |
- |
- |
| 0.2845 |
1000 |
0.0055 |
0.0360 |
0.8319 |
| 0.2874 |
1010 |
0.0059 |
- |
- |
| 0.2902 |
1020 |
0.0049 |
- |
- |
| 0.2930 |
1030 |
0.0052 |
- |
- |
| 0.2959 |
1040 |
0.0051 |
- |
- |
| 0.2987 |
1050 |
0.006 |
- |
- |
| 0.3016 |
1060 |
0.0048 |
- |
- |
| 0.3044 |
1070 |
0.0055 |
- |
- |
| 0.3073 |
1080 |
0.0052 |
- |
- |
| 0.3101 |
1090 |
0.0051 |
- |
- |
| 0.3130 |
1100 |
0.0051 |
- |
- |
| 0.3158 |
1110 |
0.005 |
- |
- |
| 0.3186 |
1120 |
0.0054 |
- |
- |
| 0.3215 |
1130 |
0.0051 |
- |
- |
| 0.3243 |
1140 |
0.0054 |
- |
- |
| 0.3272 |
1150 |
0.0056 |
- |
- |
| 0.3300 |
1160 |
0.0053 |
- |
- |
| 0.3329 |
1170 |
0.0052 |
- |
- |
| 0.3357 |
1180 |
0.0051 |
- |
- |
| 0.3386 |
1190 |
0.0051 |
- |
- |
| 0.3414 |
1200 |
0.0048 |
- |
- |
| 0.3443 |
1210 |
0.005 |
- |
- |
| 0.3471 |
1220 |
0.0055 |
- |
- |
| 0.3499 |
1230 |
0.0049 |
- |
- |
| 0.3528 |
1240 |
0.0053 |
- |
- |
| 0.3556 |
1250 |
0.0052 |
0.0364 |
0.8330 |
| 0.3585 |
1260 |
0.0051 |
- |
- |
| 0.3613 |
1270 |
0.005 |
- |
- |
| 0.3642 |
1280 |
0.005 |
- |
- |
| 0.3670 |
1290 |
0.0045 |
- |
- |
| 0.3699 |
1300 |
0.0055 |
- |
- |
| 0.3727 |
1310 |
0.0049 |
- |
- |
| 0.3755 |
1320 |
0.0049 |
- |
- |
| 0.3784 |
1330 |
0.0053 |
- |
- |
| 0.3812 |
1340 |
0.005 |
- |
- |
| 0.3841 |
1350 |
0.0048 |
- |
- |
| 0.3869 |
1360 |
0.0049 |
- |
- |
| 0.3898 |
1370 |
0.0046 |
- |
- |
| 0.3926 |
1380 |
0.0049 |
- |
- |
| 0.3955 |
1390 |
0.0052 |
- |
- |
| 0.3983 |
1400 |
0.005 |
- |
- |
| 0.4012 |
1410 |
0.0052 |
- |
- |
| 0.4040 |
1420 |
0.0052 |
- |
- |
| 0.4068 |
1430 |
0.0045 |
- |
- |
| 0.4097 |
1440 |
0.0046 |
- |
- |
| 0.4125 |
1450 |
0.0056 |
- |
- |
| 0.4154 |
1460 |
0.0056 |
- |
- |
| 0.4182 |
1470 |
0.005 |
- |
- |
| 0.4211 |
1480 |
0.0051 |
- |
- |
| 0.4239 |
1490 |
0.0049 |
- |
- |
| 0.4268 |
1500 |
0.0048 |
0.0374 |
0.8334 |
| 0.4296 |
1510 |
0.0053 |
- |
- |
| 0.4324 |
1520 |
0.0054 |
- |
- |
| 0.4353 |
1530 |
0.0048 |
- |
- |
| 0.4381 |
1540 |
0.005 |
- |
- |
| 0.4410 |
1550 |
0.0045 |
- |
- |
| 0.4438 |
1560 |
0.0046 |
- |
- |
| 0.4467 |
1570 |
0.0045 |
- |
- |
| 0.4495 |
1580 |
0.0049 |
- |
- |
| 0.4524 |
1590 |
0.0048 |
- |
- |
| 0.4552 |
1600 |
0.005 |
- |
- |
| 0.4581 |
1610 |
0.0045 |
- |
- |
| 0.4609 |
1620 |
0.0049 |
- |
- |
| 0.4637 |
1630 |
0.0044 |
- |
- |
| 0.4666 |
1640 |
0.0048 |
- |
- |
| 0.4694 |
1650 |
0.0049 |
- |
- |
| 0.4723 |
1660 |
0.0048 |
- |
- |
| 0.4751 |
1670 |
0.0051 |
- |
- |
| 0.4780 |
1680 |
0.0047 |
- |
- |
| 0.4808 |
1690 |
0.0048 |
- |
- |
| 0.4837 |
1700 |
0.0047 |
- |
- |
| 0.4865 |
1710 |
0.0044 |
- |
- |
| 0.4893 |
1720 |
0.0049 |
- |
- |
| 0.4922 |
1730 |
0.0049 |
- |
- |
| 0.4950 |
1740 |
0.0051 |
- |
- |
| 0.4979 |
1750 |
0.0043 |
0.0392 |
0.8352 |
| 0.5007 |
1760 |
0.0043 |
- |
- |
| 0.5036 |
1770 |
0.0045 |
- |
- |
| 0.5064 |
1780 |
0.0046 |
- |
- |
| 0.5093 |
1790 |
0.0042 |
- |
- |
| 0.5121 |
1800 |
0.0047 |
- |
- |
| 0.5150 |
1810 |
0.0047 |
- |
- |
| 0.5178 |
1820 |
0.0046 |
- |
- |
| 0.5206 |
1830 |
0.0044 |
- |
- |
| 0.5235 |
1840 |
0.0046 |
- |
- |
| 0.5263 |
1850 |
0.0047 |
- |
- |
| 0.5292 |
1860 |
0.0044 |
- |
- |
| 0.5320 |
1870 |
0.0047 |
- |
- |
| 0.5349 |
1880 |
0.0049 |
- |
- |
| 0.5377 |
1890 |
0.0049 |
- |
- |
| 0.5406 |
1900 |
0.0047 |
- |
- |
| 0.5434 |
1910 |
0.0045 |
- |
- |
| 0.5462 |
1920 |
0.0044 |
- |
- |
| 0.5491 |
1930 |
0.0048 |
- |
- |
| 0.5519 |
1940 |
0.0041 |
- |
- |
| 0.5548 |
1950 |
0.004 |
- |
- |
| 0.5576 |
1960 |
0.0048 |
- |
- |
| 0.5605 |
1970 |
0.0042 |
- |
- |
| 0.5633 |
1980 |
0.0048 |
- |
- |
| 0.5662 |
1990 |
0.0045 |
- |
- |
| 0.5690 |
2000 |
0.0043 |
0.0375 |
0.8359 |
| 0.5719 |
2010 |
0.005 |
- |
- |
| 0.5747 |
2020 |
0.0049 |
- |
- |
| 0.5775 |
2030 |
0.0044 |
- |
- |
| 0.5804 |
2040 |
0.0045 |
- |
- |
| 0.5832 |
2050 |
0.0043 |
- |
- |
| 0.5861 |
2060 |
0.0045 |
- |
- |
| 0.5889 |
2070 |
0.004 |
- |
- |
| 0.5918 |
2080 |
0.0042 |
- |
- |
| 0.5946 |
2090 |
0.0044 |
- |
- |
| 0.5975 |
2100 |
0.0043 |
- |
- |
| 0.6003 |
2110 |
0.0041 |
- |
- |
| 0.6032 |
2120 |
0.0046 |
- |
- |
| 0.6060 |
2130 |
0.0048 |
- |
- |
| 0.6088 |
2140 |
0.0048 |
- |
- |
| 0.6117 |
2150 |
0.0041 |
- |
- |
| 0.6145 |
2160 |
0.0044 |
- |
- |
| 0.6174 |
2170 |
0.0045 |
- |
- |
| 0.6202 |
2180 |
0.0044 |
- |
- |
| 0.6231 |
2190 |
0.0044 |
- |
- |
| 0.6259 |
2200 |
0.0046 |
- |
- |
| 0.6288 |
2210 |
0.0048 |
- |
- |
| 0.6316 |
2220 |
0.0045 |
- |
- |
| 0.6344 |
2230 |
0.004 |
- |
- |
| 0.6373 |
2240 |
0.0041 |
- |
- |
| 0.6401 |
2250 |
0.0044 |
0.0391 |
0.8369 |
| 0.6430 |
2260 |
0.0044 |
- |
- |
| 0.6458 |
2270 |
0.0045 |
- |
- |
| 0.6487 |
2280 |
0.0041 |
- |
- |
| 0.6515 |
2290 |
0.0042 |
- |
- |
| 0.6544 |
2300 |
0.0043 |
- |
- |
| 0.6572 |
2310 |
0.004 |
- |
- |
| 0.6601 |
2320 |
0.0042 |
- |
- |
| 0.6629 |
2330 |
0.0041 |
- |
- |
| 0.6657 |
2340 |
0.0045 |
- |
- |
| 0.6686 |
2350 |
0.0045 |
- |
- |
| 0.6714 |
2360 |
0.0042 |
- |
- |
| 0.6743 |
2370 |
0.0045 |
- |
- |
| 0.6771 |
2380 |
0.0044 |
- |
- |
| 0.6800 |
2390 |
0.0044 |
- |
- |
| 0.6828 |
2400 |
0.0041 |
- |
- |
| 0.6857 |
2410 |
0.0045 |
- |
- |
| 0.6885 |
2420 |
0.0046 |
- |
- |
| 0.6913 |
2430 |
0.0041 |
- |
- |
| 0.6942 |
2440 |
0.0048 |
- |
- |
| 0.6970 |
2450 |
0.0041 |
- |
- |
| 0.6999 |
2460 |
0.0043 |
- |
- |
| 0.7027 |
2470 |
0.0043 |
- |
- |
| 0.7056 |
2480 |
0.0037 |
- |
- |
| 0.7084 |
2490 |
0.0042 |
- |
- |
| 0.7113 |
2500 |
0.0043 |
0.0405 |
0.8365 |
| 0.7141 |
2510 |
0.0045 |
- |
- |
| 0.7170 |
2520 |
0.0044 |
- |
- |
| 0.7198 |
2530 |
0.0042 |
- |
- |
| 0.7226 |
2540 |
0.0042 |
- |
- |
| 0.7255 |
2550 |
0.0041 |
- |
- |
| 0.7283 |
2560 |
0.0042 |
- |
- |
| 0.7312 |
2570 |
0.0041 |
- |
- |
| 0.7340 |
2580 |
0.0042 |
- |
- |
| 0.7369 |
2590 |
0.0041 |
- |
- |
| 0.7397 |
2600 |
0.0047 |
- |
- |
| 0.7426 |
2610 |
0.0038 |
- |
- |
| 0.7454 |
2620 |
0.0041 |
- |
- |
| 0.7482 |
2630 |
0.0042 |
- |
- |
| 0.7511 |
2640 |
0.0042 |
- |
- |
| 0.7539 |
2650 |
0.0042 |
- |
- |
| 0.7568 |
2660 |
0.0041 |
- |
- |
| 0.7596 |
2670 |
0.0042 |
- |
- |
| 0.7625 |
2680 |
0.0044 |
- |
- |
| 0.7653 |
2690 |
0.0039 |
- |
- |
| 0.7682 |
2700 |
0.0037 |
- |
- |
| 0.7710 |
2710 |
0.0044 |
- |
- |
| 0.7739 |
2720 |
0.0043 |
- |
- |
| 0.7767 |
2730 |
0.0042 |
- |
- |
| 0.7795 |
2740 |
0.0041 |
- |
- |
| 0.7824 |
2750 |
0.0039 |
0.0387 |
0.8376 |
| 0.7852 |
2760 |
0.0047 |
- |
- |
| 0.7881 |
2770 |
0.004 |
- |
- |
| 0.7909 |
2780 |
0.0039 |
- |
- |
| 0.7938 |
2790 |
0.0039 |
- |
- |
| 0.7966 |
2800 |
0.0039 |
- |
- |
| 0.7995 |
2810 |
0.0039 |
- |
- |
| 0.8023 |
2820 |
0.0039 |
- |
- |
| 0.8051 |
2830 |
0.0041 |
- |
- |
| 0.8080 |
2840 |
0.0037 |
- |
- |
| 0.8108 |
2850 |
0.0044 |
- |
- |
| 0.8137 |
2860 |
0.0043 |
- |
- |
| 0.8165 |
2870 |
0.0041 |
- |
- |
| 0.8194 |
2880 |
0.0043 |
- |
- |
| 0.8222 |
2890 |
0.0039 |
- |
- |
| 0.8251 |
2900 |
0.0041 |
- |
- |
| 0.8279 |
2910 |
0.0044 |
- |
- |
| 0.8308 |
2920 |
0.004 |
- |
- |
| 0.8336 |
2930 |
0.0042 |
- |
- |
| 0.8364 |
2940 |
0.0039 |
- |
- |
| 0.8393 |
2950 |
0.004 |
- |
- |
| 0.8421 |
2960 |
0.0042 |
- |
- |
| 0.8450 |
2970 |
0.004 |
- |
- |
| 0.8478 |
2980 |
0.0039 |
- |
- |
| 0.8507 |
2990 |
0.0037 |
- |
- |
| 0.8535 |
3000 |
0.0039 |
0.0386 |
0.8386 |
| 0.8564 |
3010 |
0.0041 |
- |
- |
| 0.8592 |
3020 |
0.0043 |
- |
- |
| 0.8621 |
3030 |
0.0041 |
- |
- |
| 0.8649 |
3040 |
0.0041 |
- |
- |
| 0.8677 |
3050 |
0.0043 |
- |
- |
| 0.8706 |
3060 |
0.0042 |
- |
- |
| 0.8734 |
3070 |
0.0039 |
- |
- |
| 0.8763 |
3080 |
0.004 |
- |
- |
| 0.8791 |
3090 |
0.0039 |
- |
- |
| 0.8820 |
3100 |
0.0039 |
- |
- |
| 0.8848 |
3110 |
0.004 |
- |
- |
| 0.8877 |
3120 |
0.0039 |
- |
- |
| 0.8905 |
3130 |
0.0038 |
- |
- |
| 0.8933 |
3140 |
0.0036 |
- |
- |
| 0.8962 |
3150 |
0.0039 |
- |
- |
| 0.8990 |
3160 |
0.0039 |
- |
- |
| 0.9019 |
3170 |
0.0038 |
- |
- |
| 0.9047 |
3180 |
0.0039 |
- |
- |
| 0.9076 |
3190 |
0.0041 |
- |
- |
| 0.9104 |
3200 |
0.004 |
- |
- |
| 0.9133 |
3210 |
0.0041 |
- |
- |
| 0.9161 |
3220 |
0.0042 |
- |
- |
| 0.9190 |
3230 |
0.004 |
- |
- |
| 0.9218 |
3240 |
0.0041 |
- |
- |
| 0.9246 |
3250 |
0.0041 |
0.0420 |
0.8408 |
| 0.9275 |
3260 |
0.0041 |
- |
- |
| 0.9303 |
3270 |
0.004 |
- |
- |
| 0.9332 |
3280 |
0.0042 |
- |
- |
| 0.9360 |
3290 |
0.004 |
- |
- |
| 0.9389 |
3300 |
0.0037 |
- |
- |
| 0.9417 |
3310 |
0.0038 |
- |
- |
| 0.9446 |
3320 |
0.0039 |
- |
- |
| 0.9474 |
3330 |
0.004 |
- |
- |
| 0.9502 |
3340 |
0.0037 |
- |
- |
| 0.9531 |
3350 |
0.0038 |
- |
- |
| 0.9559 |
3360 |
0.0037 |
- |
- |
| 0.9588 |
3370 |
0.0042 |
- |
- |
| 0.9616 |
3380 |
0.0042 |
- |
- |
| 0.9645 |
3390 |
0.0042 |
- |
- |
| 0.9673 |
3400 |
0.0037 |
- |
- |
| 0.9702 |
3410 |
0.0038 |
- |
- |
| 0.9730 |
3420 |
0.0039 |
- |
- |
| 0.9759 |
3430 |
0.0038 |
- |
- |
| 0.9787 |
3440 |
0.0041 |
- |
- |
| 0.9815 |
3450 |
0.004 |
- |
- |
| 0.9844 |
3460 |
0.0039 |
- |
- |
| 0.9872 |
3470 |
0.0036 |
- |
- |
| 0.9901 |
3480 |
0.0037 |
- |
- |
| 0.9929 |
3490 |
0.0039 |
- |
- |
| 0.9958 |
3500 |
0.0036 |
0.0403 |
0.8396 |
| 0.9986 |
3510 |
0.0035 |
- |
- |
| 1.0014 |
3520 |
0.0036 |
- |
- |
| 1.0043 |
3530 |
0.0035 |
- |
- |
| 1.0071 |
3540 |
0.0036 |
- |
- |
| 1.0100 |
3550 |
0.0039 |
- |
- |
| 1.0128 |
3560 |
0.0039 |
- |
- |
| 1.0156 |
3570 |
0.004 |
- |
- |
| 1.0185 |
3580 |
0.0035 |
- |
- |
| 1.0213 |
3590 |
0.0036 |
- |
- |
| 1.0242 |
3600 |
0.004 |
- |
- |
| 1.0270 |
3610 |
0.0039 |
- |
- |
| 1.0299 |
3620 |
0.0042 |
- |
- |
| 1.0327 |
3630 |
0.0038 |
- |
- |
| 1.0356 |
3640 |
0.004 |
- |
- |
| 1.0384 |
3650 |
0.0038 |
- |
- |
| 1.0413 |
3660 |
0.0039 |
- |
- |
| 1.0441 |
3670 |
0.0037 |
- |
- |
| 1.0469 |
3680 |
0.0039 |
- |
- |
| 1.0498 |
3690 |
0.0037 |
- |
- |
| 1.0526 |
3700 |
0.0038 |
- |
- |
| 1.0555 |
3710 |
0.0036 |
- |
- |
| 1.0583 |
3720 |
0.0035 |
- |
- |
| 1.0612 |
3730 |
0.0038 |
- |
- |
| 1.0640 |
3740 |
0.0032 |
- |
- |
| 1.0669 |
3750 |
0.0038 |
0.0408 |
0.8405 |
| 1.0697 |
3760 |
0.0034 |
- |
- |
| 1.0725 |
3770 |
0.0037 |
- |
- |
| 1.0754 |
3780 |
0.0036 |
- |
- |
| 1.0782 |
3790 |
0.0038 |
- |
- |
| 1.0811 |
3800 |
0.0038 |
- |
- |
| 1.0839 |
3810 |
0.0033 |
- |
- |
| 1.0868 |
3820 |
0.0039 |
- |
- |
| 1.0896 |
3830 |
0.0034 |
- |
- |
| 1.0925 |
3840 |
0.0035 |
- |
- |
| 1.0953 |
3850 |
0.0036 |
- |
- |
| 1.0982 |
3860 |
0.004 |
- |
- |
| 1.1010 |
3870 |
0.0038 |
- |
- |
| 1.1038 |
3880 |
0.0032 |
- |
- |
| 1.1067 |
3890 |
0.0036 |
- |
- |
| 1.1095 |
3900 |
0.0033 |
- |
- |
| 1.1124 |
3910 |
0.0038 |
- |
- |
| 1.1152 |
3920 |
0.0034 |
- |
- |
| 1.1181 |
3930 |
0.0034 |
- |
- |
| 1.1209 |
3940 |
0.0031 |
- |
- |
| 1.1238 |
3950 |
0.0041 |
- |
- |
| 1.1266 |
3960 |
0.0038 |
- |
- |
| 1.1294 |
3970 |
0.0033 |
- |
- |
| 1.1323 |
3980 |
0.0037 |
- |
- |
| 1.1351 |
3990 |
0.0035 |
- |
- |
| 1.1380 |
4000 |
0.0034 |
0.0403 |
0.8428 |
| 1.1408 |
4010 |
0.0033 |
- |
- |
| 1.1437 |
4020 |
0.0035 |
- |
- |
| 1.1465 |
4030 |
0.0041 |
- |
- |
| 1.1494 |
4040 |
0.0036 |
- |
- |
| 1.1522 |
4050 |
0.0035 |
- |
- |
| 1.1551 |
4060 |
0.0038 |
- |
- |
| 1.1579 |
4070 |
0.0034 |
- |
- |
| 1.1607 |
4080 |
0.003 |
- |
- |
| 1.1636 |
4090 |
0.0038 |
- |
- |
| 1.1664 |
4100 |
0.0035 |
- |
- |
| 1.1693 |
4110 |
0.0036 |
- |
- |
| 1.1721 |
4120 |
0.0036 |
- |
- |
| 1.1750 |
4130 |
0.0035 |
- |
- |
| 1.1778 |
4140 |
0.004 |
- |
- |
| 1.1807 |
4150 |
0.003 |
- |
- |
| 1.1835 |
4160 |
0.0036 |
- |
- |
| 1.1864 |
4170 |
0.004 |
- |
- |
| 1.1892 |
4180 |
0.0034 |
- |
- |
| 1.1920 |
4190 |
0.0035 |
- |
- |
| 1.1949 |
4200 |
0.004 |
- |
- |
| 1.1977 |
4210 |
0.0037 |
- |
- |
| 1.2006 |
4220 |
0.0037 |
- |
- |
| 1.2034 |
4230 |
0.0032 |
- |
- |
| 1.2063 |
4240 |
0.0035 |
- |
- |
| 1.2091 |
4250 |
0.0035 |
0.0408 |
0.8411 |
| 1.2120 |
4260 |
0.0033 |
- |
- |
| 1.2148 |
4270 |
0.0039 |
- |
- |
| 1.2176 |
4280 |
0.0037 |
- |
- |
| 1.2205 |
4290 |
0.0036 |
- |
- |
| 1.2233 |
4300 |
0.0033 |
- |
- |
| 1.2262 |
4310 |
0.0034 |
- |
- |
| 1.2290 |
4320 |
0.0033 |
- |
- |
| 1.2319 |
4330 |
0.0034 |
- |
- |
| 1.2347 |
4340 |
0.0035 |
- |
- |
| 1.2376 |
4350 |
0.0035 |
- |
- |
| 1.2404 |
4360 |
0.003 |
- |
- |
| 1.2433 |
4370 |
0.0037 |
- |
- |
| 1.2461 |
4380 |
0.0035 |
- |
- |
| 1.2489 |
4390 |
0.0033 |
- |
- |
| 1.2518 |
4400 |
0.0033 |
- |
- |
| 1.2546 |
4410 |
0.0033 |
- |
- |
| 1.2575 |
4420 |
0.0034 |
- |
- |
| 1.2603 |
4430 |
0.0032 |
- |
- |
| 1.2632 |
4440 |
0.0032 |
- |
- |
| 1.2660 |
4450 |
0.0033 |
- |
- |
| 1.2689 |
4460 |
0.0031 |
- |
- |
| 1.2717 |
4470 |
0.0033 |
- |
- |
| 1.2745 |
4480 |
0.0033 |
- |
- |
| 1.2774 |
4490 |
0.0027 |
- |
- |
| 1.2802 |
4500 |
0.0035 |
0.0418 |
0.8422 |
| 1.2831 |
4510 |
0.0033 |
- |
- |
| 1.2859 |
4520 |
0.0035 |
- |
- |
| 1.2888 |
4530 |
0.0031 |
- |
- |
| 1.2916 |
4540 |
0.0031 |
- |
- |
| 1.2945 |
4550 |
0.003 |
- |
- |
| 1.2973 |
4560 |
0.0035 |
- |
- |
| 1.3002 |
4570 |
0.0034 |
- |
- |
| 1.3030 |
4580 |
0.003 |
- |
- |
| 1.3058 |
4590 |
0.0036 |
- |
- |
| 1.3087 |
4600 |
0.0032 |
- |
- |
| 1.3115 |
4610 |
0.0033 |
- |
- |
| 1.3144 |
4620 |
0.0031 |
- |
- |
| 1.3172 |
4630 |
0.0032 |
- |
- |
| 1.3201 |
4640 |
0.0032 |
- |
- |
| 1.3229 |
4650 |
0.0031 |
- |
- |
| 1.3258 |
4660 |
0.0035 |
- |
- |
| 1.3286 |
4670 |
0.003 |
- |
- |
| 1.3314 |
4680 |
0.0033 |
- |
- |
| 1.3343 |
4690 |
0.0032 |
- |
- |
| 1.3371 |
4700 |
0.0033 |
- |
- |
| 1.3400 |
4710 |
0.003 |
- |
- |
| 1.3428 |
4720 |
0.0032 |
- |
- |
| 1.3457 |
4730 |
0.0035 |
- |
- |
| 1.3485 |
4740 |
0.0034 |
- |
- |
| 1.3514 |
4750 |
0.003 |
0.0396 |
0.8409 |
| 1.3542 |
4760 |
0.0032 |
- |
- |
| 1.3571 |
4770 |
0.0033 |
- |
- |
| 1.3599 |
4780 |
0.0032 |
- |
- |
| 1.3627 |
4790 |
0.003 |
- |
- |
| 1.3656 |
4800 |
0.0028 |
- |
- |
| 1.3684 |
4810 |
0.0031 |
- |
- |
| 1.3713 |
4820 |
0.0033 |
- |
- |
| 1.3741 |
4830 |
0.003 |
- |
- |
| 1.3770 |
4840 |
0.0032 |
- |
- |
| 1.3798 |
4850 |
0.003 |
- |
- |
| 1.3827 |
4860 |
0.0034 |
- |
- |
| 1.3855 |
4870 |
0.0028 |
- |
- |
| 1.3883 |
4880 |
0.0029 |
- |
- |
| 1.3912 |
4890 |
0.003 |
- |
- |
| 1.3940 |
4900 |
0.0032 |
- |
- |
| 1.3969 |
4910 |
0.003 |
- |
- |
| 1.3997 |
4920 |
0.0032 |
- |
- |
| 1.4026 |
4930 |
0.0033 |
- |
- |
| 1.4054 |
4940 |
0.0031 |
- |
- |
| 1.4083 |
4950 |
0.0029 |
- |
- |
| 1.4111 |
4960 |
0.0032 |
- |
- |
| 1.4140 |
4970 |
0.0035 |
- |
- |
| 1.4168 |
4980 |
0.0032 |
- |
- |
| 1.4196 |
4990 |
0.0034 |
- |
- |
| 1.4225 |
5000 |
0.0032 |
0.0440 |
0.8409 |
| 1.4253 |
5010 |
0.0034 |
- |
- |
| 1.4282 |
5020 |
0.0029 |
- |
- |
| 1.4310 |
5030 |
0.0034 |
- |
- |
| 1.4339 |
5040 |
0.0031 |
- |
- |
| 1.4367 |
5050 |
0.0033 |
- |
- |
| 1.4396 |
5060 |
0.003 |
- |
- |
| 1.4424 |
5070 |
0.003 |
- |
- |
| 1.4453 |
5080 |
0.0028 |
- |
- |
| 1.4481 |
5090 |
0.003 |
- |
- |
| 1.4509 |
5100 |
0.003 |
- |
- |
| 1.4538 |
5110 |
0.0031 |
- |
- |
| 1.4566 |
5120 |
0.003 |
- |
- |
| 1.4595 |
5130 |
0.003 |
- |
- |
| 1.4623 |
5140 |
0.0032 |
- |
- |
| 1.4652 |
5150 |
0.0029 |
- |
- |
| 1.4680 |
5160 |
0.0029 |
- |
- |
| 1.4709 |
5170 |
0.0031 |
- |
- |
| 1.4737 |
5180 |
0.0032 |
- |
- |
| 1.4765 |
5190 |
0.0031 |
- |
- |
| 1.4794 |
5200 |
0.0027 |
- |
- |
| 1.4822 |
5210 |
0.0029 |
- |
- |
| 1.4851 |
5220 |
0.003 |
- |
- |
| 1.4879 |
5230 |
0.0027 |
- |
- |
| 1.4908 |
5240 |
0.0031 |
- |
- |
| 1.4936 |
5250 |
0.0032 |
0.0432 |
0.8411 |
| 1.4965 |
5260 |
0.0028 |
- |
- |
| 1.4993 |
5270 |
0.0029 |
- |
- |
| 1.5022 |
5280 |
0.0029 |
- |
- |
| 1.5050 |
5290 |
0.0027 |
- |
- |
| 1.5078 |
5300 |
0.0028 |
- |
- |
| 1.5107 |
5310 |
0.0028 |
- |
- |
| 1.5135 |
5320 |
0.003 |
- |
- |
| 1.5164 |
5330 |
0.003 |
- |
- |
| 1.5192 |
5340 |
0.0029 |
- |
- |
| 1.5221 |
5350 |
0.0027 |
- |
- |
| 1.5249 |
5360 |
0.003 |
- |
- |
| 1.5278 |
5370 |
0.0026 |
- |
- |
| 1.5306 |
5380 |
0.0028 |
- |
- |
| 1.5334 |
5390 |
0.0032 |
- |
- |
| 1.5363 |
5400 |
0.0027 |
- |
- |
| 1.5391 |
5410 |
0.0033 |
- |
- |
| 1.5420 |
5420 |
0.003 |
- |
- |
| 1.5448 |
5430 |
0.0028 |
- |
- |
| 1.5477 |
5440 |
0.0029 |
- |
- |
| 1.5505 |
5450 |
0.0028 |
- |
- |
| 1.5534 |
5460 |
0.003 |
- |
- |
| 1.5562 |
5470 |
0.0024 |
- |
- |
| 1.5591 |
5480 |
0.003 |
- |
- |
| 1.5619 |
5490 |
0.0028 |
- |
- |
| 1.5647 |
5500 |
0.003 |
0.0398 |
0.8398 |
| 1.5676 |
5510 |
0.0026 |
- |
- |
| 1.5704 |
5520 |
0.0031 |
- |
- |
| 1.5733 |
5530 |
0.0028 |
- |
- |
| 1.5761 |
5540 |
0.003 |
- |
- |
| 1.5790 |
5550 |
0.0027 |
- |
- |
| 1.5818 |
5560 |
0.0027 |
- |
- |
| 1.5847 |
5570 |
0.0027 |
- |
- |
| 1.5875 |
5580 |
0.0028 |
- |
- |
| 1.5903 |
5590 |
0.0026 |
- |
- |
| 1.5932 |
5600 |
0.0026 |
- |
- |
| 1.5960 |
5610 |
0.0029 |
- |
- |
| 1.5989 |
5620 |
0.0028 |
- |
- |
| 1.6017 |
5630 |
0.0028 |
- |
- |
| 1.6046 |
5640 |
0.0029 |
- |
- |
| 1.6074 |
5650 |
0.0032 |
- |
- |
| 1.6103 |
5660 |
0.0026 |
- |
- |
| 1.6131 |
5670 |
0.0029 |
- |
- |
| 1.6160 |
5680 |
0.0027 |
- |
- |
| 1.6188 |
5690 |
0.0029 |
- |
- |
| 1.6216 |
5700 |
0.0028 |
- |
- |
| 1.6245 |
5710 |
0.0029 |
- |
- |
| 1.6273 |
5720 |
0.003 |
- |
- |
| 1.6302 |
5730 |
0.0026 |
- |
- |
| 1.6330 |
5740 |
0.0028 |
- |
- |
| 1.6359 |
5750 |
0.0024 |
0.0422 |
0.8383 |
| 1.6387 |
5760 |
0.0026 |
- |
- |
| 1.6416 |
5770 |
0.003 |
- |
- |
| 1.6444 |
5780 |
0.0028 |
- |
- |
| 1.6472 |
5790 |
0.0024 |
- |
- |
| 1.6501 |
5800 |
0.0028 |
- |
- |
| 1.6529 |
5810 |
0.0026 |
- |
- |
| 1.6558 |
5820 |
0.0026 |
- |
- |
| 1.6586 |
5830 |
0.0026 |
- |
- |
| 1.6615 |
5840 |
0.0027 |
- |
- |
| 1.6643 |
5850 |
0.0028 |
- |
- |
| 1.6672 |
5860 |
0.0029 |
- |
- |
| 1.6700 |
5870 |
0.0026 |
- |
- |
| 1.6729 |
5880 |
0.0027 |
- |
- |
| 1.6757 |
5890 |
0.0029 |
- |
- |
| 1.6785 |
5900 |
0.0027 |
- |
- |
| 1.6814 |
5910 |
0.0027 |
- |
- |
| 1.6842 |
5920 |
0.0026 |
- |
- |
| 1.6871 |
5930 |
0.0029 |
- |
- |
| 1.6899 |
5940 |
0.0028 |
- |
- |
| 1.6928 |
5950 |
0.0033 |
- |
- |
| 1.6956 |
5960 |
0.0025 |
- |
- |
| 1.6985 |
5970 |
0.0026 |
- |
- |
| 1.7013 |
5980 |
0.0026 |
- |
- |
| 1.7042 |
5990 |
0.0025 |
- |
- |
| 1.7070 |
6000 |
0.0027 |
0.0413 |
0.8409 |
| 1.7098 |
6010 |
0.0028 |
- |
- |
| 1.7127 |
6020 |
0.0026 |
- |
- |
| 1.7155 |
6030 |
0.0027 |
- |
- |
| 1.7184 |
6040 |
0.0031 |
- |
- |
| 1.7212 |
6050 |
0.0027 |
- |
- |
| 1.7241 |
6060 |
0.0027 |
- |
- |
| 1.7269 |
6070 |
0.0026 |
- |
- |
| 1.7298 |
6080 |
0.0027 |
- |
- |
| 1.7326 |
6090 |
0.0026 |
- |
- |
| 1.7354 |
6100 |
0.0027 |
- |
- |
| 1.7383 |
6110 |
0.0027 |
- |
- |
| 1.7411 |
6120 |
0.0026 |
- |
- |
| 1.7440 |
6130 |
0.0024 |
- |
- |
| 1.7468 |
6140 |
0.0026 |
- |
- |
| 1.7497 |
6150 |
0.0027 |
- |
- |
| 1.7525 |
6160 |
0.0026 |
- |
- |
| 1.7554 |
6170 |
0.0026 |
- |
- |
| 1.7582 |
6180 |
0.0026 |
- |
- |
| 1.7611 |
6190 |
0.0024 |
- |
- |
| 1.7639 |
6200 |
0.0029 |
- |
- |
| 1.7667 |
6210 |
0.0024 |
- |
- |
| 1.7696 |
6220 |
0.0026 |
- |
- |
| 1.7724 |
6230 |
0.0027 |
- |
- |
| 1.7753 |
6240 |
0.0028 |
- |
- |
| 1.7781 |
6250 |
0.0028 |
0.0400 |
0.8384 |
| 1.7810 |
6260 |
0.0026 |
- |
- |
| 1.7838 |
6270 |
0.0026 |
- |
- |
| 1.7867 |
6280 |
0.0027 |
- |
- |
| 1.7895 |
6290 |
0.0026 |
- |
- |
| 1.7923 |
6300 |
0.0026 |
- |
- |
| 1.7952 |
6310 |
0.0025 |
- |
- |
| 1.7980 |
6320 |
0.0026 |
- |
- |
| 1.8009 |
6330 |
0.0023 |
- |
- |
| 1.8037 |
6340 |
0.0027 |
- |
- |
| 1.8066 |
6350 |
0.0027 |
- |
- |
| 1.8094 |
6360 |
0.0027 |
- |
- |
| 1.8123 |
6370 |
0.0027 |
- |
- |
| 1.8151 |
6380 |
0.0026 |
- |
- |
| 1.8180 |
6390 |
0.0025 |
- |
- |
| 1.8208 |
6400 |
0.0026 |
- |
- |
| 1.8236 |
6410 |
0.0022 |
- |
- |
| 1.8265 |
6420 |
0.0028 |
- |
- |
| 1.8293 |
6430 |
0.0026 |
- |
- |
| 1.8322 |
6440 |
0.0026 |
- |
- |
| 1.8350 |
6450 |
0.0025 |
- |
- |
| 1.8379 |
6460 |
0.0025 |
- |
- |
| 1.8407 |
6470 |
0.0025 |
- |
- |
| 1.8436 |
6480 |
0.0027 |
- |
- |
| 1.8464 |
6490 |
0.0028 |
- |
- |
| 1.8492 |
6500 |
0.0022 |
0.0406 |
0.8396 |
| 1.8521 |
6510 |
0.0024 |
- |
- |
| 1.8549 |
6520 |
0.0026 |
- |
- |
| 1.8578 |
6530 |
0.0027 |
- |
- |
| 1.8606 |
6540 |
0.0026 |
- |
- |
| 1.8635 |
6550 |
0.0026 |
- |
- |
| 1.8663 |
6560 |
0.0026 |
- |
- |
| 1.8692 |
6570 |
0.0026 |
- |
- |
| 1.8720 |
6580 |
0.0026 |
- |
- |
| 1.8749 |
6590 |
0.0026 |
- |
- |
| 1.8777 |
6600 |
0.0025 |
- |
- |
| 1.8805 |
6610 |
0.0024 |
- |
- |
| 1.8834 |
6620 |
0.0025 |
- |
- |
| 1.8862 |
6630 |
0.0025 |
- |
- |
| 1.8891 |
6640 |
0.0024 |
- |
- |
| 1.8919 |
6650 |
0.0024 |
- |
- |
| 1.8948 |
6660 |
0.0023 |
- |
- |
| 1.8976 |
6670 |
0.0024 |
- |
- |
| 1.9005 |
6680 |
0.0024 |
- |
- |
| 1.9033 |
6690 |
0.0024 |
- |
- |
| 1.9061 |
6700 |
0.0023 |
- |
- |
| 1.9090 |
6710 |
0.0027 |
- |
- |
| 1.9118 |
6720 |
0.0024 |
- |
- |
| 1.9147 |
6730 |
0.0025 |
- |
- |
| 1.9175 |
6740 |
0.0025 |
- |
- |
| 1.9204 |
6750 |
0.0025 |
0.0385 |
0.8421 |
| 1.9232 |
6760 |
0.0026 |
- |
- |
| 1.9261 |
6770 |
0.0024 |
- |
- |
| 1.9289 |
6780 |
0.0024 |
- |
- |
| 1.9318 |
6790 |
0.0025 |
- |
- |
| 1.9346 |
6800 |
0.0025 |
- |
- |
| 1.9374 |
6810 |
0.0024 |
- |
- |
| 1.9403 |
6820 |
0.0023 |
- |
- |
| 1.9431 |
6830 |
0.0023 |
- |
- |
| 1.9460 |
6840 |
0.0025 |
- |
- |
| 1.9488 |
6850 |
0.0023 |
- |
- |
| 1.9517 |
6860 |
0.0022 |
- |
- |
| 1.9545 |
6870 |
0.0025 |
- |
- |
| 1.9574 |
6880 |
0.0024 |
- |
- |
| 1.9602 |
6890 |
0.0025 |
- |
- |
| 1.9630 |
6900 |
0.0027 |
- |
- |
| 1.9659 |
6910 |
0.0024 |
- |
- |
| 1.9687 |
6920 |
0.0025 |
- |
- |
| 1.9716 |
6930 |
0.0023 |
- |
- |
| 1.9744 |
6940 |
0.0022 |
- |
- |
| 1.9773 |
6950 |
0.0022 |
- |
- |
| 1.9801 |
6960 |
0.0025 |
- |
- |
| 1.9830 |
6970 |
0.0022 |
- |
- |
| 1.9858 |
6980 |
0.0024 |
- |
- |
| 1.9887 |
6990 |
0.0024 |
- |
- |
| 1.9915 |
7000 |
0.0023 |
0.0390 |
0.8406 |
| 1.9943 |
7010 |
0.0023 |
- |
- |
| 1.9972 |
7020 |
0.0023 |
- |
- |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}