xbilek25's picture
End of training
647b021 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-medium-en-cv-4.2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: en
          split: test
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 13.345521023765997

whisper-medium-en-cv-4.2

This model is a fine-tuned version of openai/whisper-medium.en on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5540
  • Wer: 13.3455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 13500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2332 0.1667 2250 0.4139 12.7057
0.0826 1.1667 4500 0.4543 14.2596
0.0267 2.1667 6750 0.4961 14.5338
0.0066 3.1667 9000 0.5053 14.6252
0.0019 4.1667 11250 0.5349 13.9854
0.0011 5.1667 13500 0.5540 13.3455

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1