metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: whisper-medium-en-cv-4.4
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: en
split: test
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 13.619744058500913
whisper-medium-en-cv-4.4
This model is a fine-tuned version of openai/whisper-medium.en on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3998
- Wer: 13.6197
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- training_steps: 1125
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3107 | 0.3333 | 375 | 0.4282 | 15.5393 |
0.2696 | 0.6667 | 750 | 0.4044 | 12.3400 |
0.2192 | 1.0 | 1125 | 0.3998 | 13.6197 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1