whisper-medium-en-cv-9.0
This model is a fine-tuned version of openai/whisper-medium.en on the xbilek25/train_hall_absorb_0.1_speed15 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8573
- Wer: 26.1176
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 375
- training_steps: 2250
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0 | 0 | 2.1191 | 32.3637 |
0.631 | 0.1667 | 375 | 0.8755 | 35.5175 |
0.4428 | 0.3333 | 750 | 0.8454 | 27.8628 |
0.245 | 1.1667 | 1125 | 0.8499 | 26.9137 |
0.1727 | 1.3333 | 1500 | 0.8380 | 27.4954 |
0.0979 | 2.1667 | 1875 | 0.8513 | 26.8524 |
0.078 | 2.3333 | 2250 | 0.8573 | 26.1176 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for xbilek25/whisper-medium-en-cv-9.0
Base model
openai/whisper-medium.enDataset used to train xbilek25/whisper-medium-en-cv-9.0
Evaluation results
- Wer on xbilek25/train_hall_absorb_0.1_speed15self-reported26.118