whisper-medium-en-cv-9.0

This model is a fine-tuned version of openai/whisper-medium.en on the xbilek25/train_hall_absorb_0.1_speed15 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8573
  • Wer: 26.1176

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 48
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 375
  • training_steps: 2250
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0 0 2.1191 32.3637
0.631 0.1667 375 0.8755 35.5175
0.4428 0.3333 750 0.8454 27.8628
0.245 1.1667 1125 0.8499 26.9137
0.1727 1.3333 1500 0.8380 27.4954
0.0979 2.1667 1875 0.8513 26.8524
0.078 2.3333 2250 0.8573 26.1176

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for xbilek25/whisper-medium-en-cv-9.0

Finetuned
(63)
this model

Dataset used to train xbilek25/whisper-medium-en-cv-9.0

Evaluation results