|
--- |
|
library_name: transformers |
|
tags: |
|
- llama-3 |
|
- tiny-llama |
|
- nano-llama |
|
- small-llama |
|
- random-llama |
|
- tiny |
|
- small |
|
- nano |
|
- random |
|
- debug |
|
- llama-3-debug |
|
- gpt |
|
- generation |
|
- xiaodongguaAIGC |
|
pipeline_tag: text-generation |
|
language: |
|
- en |
|
- zh |
|
--- |
|
|
|
# llama-3-debug |
|
|
|
|
|
This model use for debug, the parameter is random. |
|
|
|
It's small only '~32MB' memory size, that is efficent for you to download and debug. |
|
|
|
`llama-3-debug` model config modified as follow |
|
|
|
```python |
|
config.intermediate_size = 128 |
|
config.hidden_size = 64 |
|
config.num_attention_heads = 2 |
|
config.num_key_value_heads = 2 |
|
config.num_hidden_layers = 1 |
|
``` |
|
|
|
If you want to load it by this code |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model_name = 'xiaodongguaAIGC/llama-3-debug' |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
print(model) |
|
print(tokenizer) |
|
``` |