SentenceTransformer based on facebook/contriever
This is a sentence-transformers model finetuned from facebook/contriever. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: facebook/contriever
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Assess the strengths and weaknesses of re-shipping contaminated produce to another destination.',
"If contamination (like live organisms or soil) is found in your produce, the MPI inspector will inform you about the options for your consignment. Depending on the type of contamination, you may choose to: identify the organism, and treat if it's identified as a restricted pest; treat the container or consignment (for example, by fumigation); re-ship the product to another destination; destroy the product.",
'SFA will review the documentation and may conduct an inspection visit to the establishment before granting approval.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7200, 0.4950],
# [0.7200, 1.0000, 0.5483],
# [0.4950, 0.5483, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6071 |
cosine_accuracy@3 | 0.8141 |
cosine_accuracy@5 | 0.8965 |
cosine_accuracy@10 | 0.9553 |
cosine_precision@1 | 0.6071 |
cosine_precision@3 | 0.3098 |
cosine_precision@5 | 0.2146 |
cosine_precision@10 | 0.1184 |
cosine_recall@1 | 0.5145 |
cosine_recall@3 | 0.7476 |
cosine_recall@5 | 0.8451 |
cosine_recall@10 | 0.922 |
cosine_ndcg@10 | 0.7544 |
cosine_mrr@10 | 0.7259 |
cosine_map@100 | 0.6901 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,902 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 8 tokens
- mean: 19.53 tokens
- max: 35 tokens
- min: 5 tokens
- mean: 49.8 tokens
- max: 257 tokens
- Samples:
sentence_0 sentence_1 What is the acceptable microbiological level in a sample unit?
m = the acceptable microbiological level in a sample unit.
How would you apply the Import Health Standard (IHS) to ensure successful food importation?
The import health standard (IHS) for your product will tell you what you need to do to successfully import it, including getting manufacturers' declarations and zoosanitary certificates when required.
What are the three ways to demonstrate seafood safety for food safety clearance?
Getting food safety clearance
If you're importing seafood that requires food safety clearance, you may be asked to demonstrate its safety one of 3 ways:
NZ Importer Assurance: A registered food importer that's verified by MPI can be issued with a NZ Importer Assurance (previously known as a Multiple Release Permit).
Official certificate: For some countries, MPI will accept official certificates (from the appropriate government agency) as assurance the food is safe. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 384, 256 ], "matryoshka_weights": [ 1.0, 0.8, 0.6, 0.4 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 6per_device_eval_batch_size
: 6num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 6per_device_eval_batch_size
: 6per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 80 | 0.6845 |
1.25 | 100 | 0.6997 |
2.0 | 160 | 0.7242 |
2.5 | 200 | 0.7416 |
3.0 | 240 | 0.7444 |
3.75 | 300 | 0.7544 |
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for xiaohaoWillX/contriever-f-policy
Base model
facebook/contrieverEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.607
- Cosine Accuracy@3 on Unknownself-reported0.814
- Cosine Accuracy@5 on Unknownself-reported0.896
- Cosine Accuracy@10 on Unknownself-reported0.955
- Cosine Precision@1 on Unknownself-reported0.607
- Cosine Precision@3 on Unknownself-reported0.310
- Cosine Precision@5 on Unknownself-reported0.215
- Cosine Precision@10 on Unknownself-reported0.118
- Cosine Recall@1 on Unknownself-reported0.515
- Cosine Recall@3 on Unknownself-reported0.748