File size: 21,821 Bytes
709b1ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:3056
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: intfloat/e5-base-v2
widget:
- source_sentence: Assess the strengths and weaknesses of initiatives aimed at growing
indigenous agribusiness.
sentences:
- 'In Chile, 80% of sources go to irrigation and agriculture, making irrigation
in agriculture a relevant element to consider. The main aspects associated with
irrigation in agriculture are salinity, toxicity, and microbiological quality
due to pathogenic organisms present in wastewater. When discussing irrigation,
the type of irrigation must be taken into account, as there are globally two types:
restrictive irrigation, which applies to products eaten raw, and irrigation without
restriction, which has no significant effects on agriculture, animals, or humans.'
- Mr Yoshiyuki Arima discussed the World Bank's focus on sustainable solutions to
challenges like climate change and gender equality. The World Bank is moving from
Green Bonds to Sustainable Development Bonds, using SDGs as a framework. They
are working with the Government Pension Investment Fund on research related to
SDGs.
- Technical and leadership development to grow indigenous agribusiness. Commercialisation
and access to market channels – both domestic and international – for indigenous
goods and services. Building networks to strengthen and increase participation
in the food system of indigenous people in the Asia Pacific region.
- source_sentence: What is the largest water-consuming sector in Australia's economy?
sentences:
- Navarrot holds a Minor in Sustainability Studies.
- Australia’s agricultural sector is the largest water consuming sector in the economy,
accounting for 65 percent of total consumption in 2005. In the Murray-Darling
Basin, climate change will lead to decreased water levels and difficulties meeting
demand for irrigation while maintaining environmental flows. Additionally, vegetation
will consume more water under higher temperatures.
- The project contributes to the implementation of the APEC Food Security Roadmap
Towards 2030, focusing on food production, processing, and distribution. It includes
targets such as improving food system related digital literacy, promoting public-private
investment, modernizing food storage facilities, and sharing best practices among
APEC economies.
- source_sentence: How would you use anaerobic digestion to reduce landfill reliance
in a city?
sentences:
- 'Innovation Approach: Technologies like anaerobic digestion and microbial transformation
create biogas and animal feed, turning waste into valuable resources and reducing
landfill reliance.'
- The initiative started from the previous satellite communication project that
ITU implemented in the Pacific. ITU provided 9 economies with 93 units of satellite
ground stations, so the remote islands were connected with the satellites. For
the islands, the satellites became essential communication means when disaster
hits the region. For instance, when the hurricane hit in 2020, the satellite ground
stations were the only communication means when the economies tried to initiate
the disaster response efforts during the Covid lockdown. Additionally, according
to ITU’s assessment, this communication means were used by communities and remote
and previously unconnected communities for education and health, and to provide
and receive government services.
- Mexico cited changes to the lengths of growing seasons, with increased temperatures
leading to shorter growing seasons in traditional agricultural areas as temperatures
become too extreme for both crops and livestock.
- source_sentence: What would happen if APEC economies failed to coordinate across
borders?
sentences:
- APEC economies must co-ordinate across borders to facilitate services. The greater
the coherence between industry and governments, the greater the likelihood of
success.
- Another key issue she made clear about the food systems was the transaction costs.
To unlock the potential of the food systems, the transaction costs issues should
be addressed. These transactions are all over the food systems. They are encouraged
by farmers, their business partners to find each other, make deals and ensure
that these deals are enforced. While the transactions being essential to the production
of goods, the costs following them drive farmers to choose quantity over quality
at the expense of the environment, which ultimately affect consumers product choices.
- '• Mortality risk: lack of real time data to react.
• Yield optimization: no proper water quality data for yield optimization.'
- source_sentence: Identify the main goal of closing resource loops.
sentences:
- Closing resource loops aims to create new value through the reuse and recycling
of used materials.
- Shelf life can be extended up to 18 month, would this violate the expiration date?
- Closing resource loops aims to create new value through the reuse and recycling
of used materials.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on intfloat/e5-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.7447643979057592
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8992146596858639
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.93717277486911
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9607329842931938
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7447643979057592
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32504363001745196
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20863874345549735
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10863874345549739
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6882635253054101
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8697643979057592
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9212478184991274
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9526614310645725
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.849824960377896
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8267877919055926
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8125610657293678
name: Cosine Map@100
---
# SentenceTransformer based on intfloat/e5-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision f52bf8ec8c7124536f0efb74aca902b2995e5bcd -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Identify the main goal of closing resource loops.',
'Closing resource loops aims to create new value through the reuse and recycling of used materials.',
'Shelf life can be extended up to 18 month, would this violate the expiration date?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8682, 0.4450],
# [0.8682, 1.0000, 0.4960],
# [0.4450, 0.4960, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7448 |
| cosine_accuracy@3 | 0.8992 |
| cosine_accuracy@5 | 0.9372 |
| cosine_accuracy@10 | 0.9607 |
| cosine_precision@1 | 0.7448 |
| cosine_precision@3 | 0.325 |
| cosine_precision@5 | 0.2086 |
| cosine_precision@10 | 0.1086 |
| cosine_recall@1 | 0.6883 |
| cosine_recall@3 | 0.8698 |
| cosine_recall@5 | 0.9212 |
| cosine_recall@10 | 0.9527 |
| **cosine_ndcg@10** | **0.8498** |
| cosine_mrr@10 | 0.8268 |
| cosine_map@100 | 0.8126 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3,056 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 82.66 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How does the proximity of energy generation to consumption benefit floating solar plants?</code> | <code>What are the benefits of using a floating solar plant? At first, the interest is the use solar energy to generate electricity. The performance peak of solar panels is at 25 degrees Celcius, anything above generates a performance loss of 0.4%. Thus, when using water as a cooling system, the photovoltaic panel stays close to 25 degrees. Another aspect to consider is the point of energy consumption, which is close to the generation point.</code> |
| <code>Who won the Chilean award for women entrepreneurs at the regional level?</code> | <code>Mrs Curumilla won the Chilean award for women entrepreneurs at the regional level.</code> |
| <code>How did the follow-up survey contribute to the establishment of working groups?</code> | <code>The answers and interventions collected from the survey helped establish the different working groups and address common challenges in the workshop.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
384,
256
],
"matryoshka_weights": [
1.0,
0.8,
0.6,
0.4
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:------:|:----:|:--------------:|
| 0.7812 | 100 | 0.7980 |
| 1.0 | 128 | 0.8078 |
| 1.5625 | 200 | 0.8259 |
| 2.0 | 256 | 0.8463 |
| 2.3438 | 300 | 0.8446 |
| 3.0 | 384 | 0.8483 |
| 3.125 | 400 | 0.8498 |
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |