File size: 21,821 Bytes
709b1ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:3056
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: intfloat/e5-base-v2
widget:
- source_sentence: Assess the strengths and weaknesses of initiatives aimed at growing
    indigenous agribusiness.
  sentences:
  - 'In Chile, 80% of sources go to irrigation and agriculture, making irrigation
    in agriculture a relevant element to consider. The main aspects associated with
    irrigation in agriculture are salinity, toxicity, and microbiological quality
    due to pathogenic organisms present in wastewater. When discussing irrigation,
    the type of irrigation must be taken into account, as there are globally two types:
    restrictive irrigation, which applies to products eaten raw, and irrigation without
    restriction, which has no significant effects on agriculture, animals, or humans.'
  - Mr Yoshiyuki Arima discussed the World Bank's focus on sustainable solutions to
    challenges like climate change and gender equality. The World Bank is moving from
    Green Bonds to Sustainable Development Bonds, using SDGs as a framework. They
    are working with the Government Pension Investment Fund on research related to
    SDGs.
  - Technical and leadership development to grow indigenous agribusiness. Commercialisation
    and access to market channels  both domestic and international  for indigenous
    goods and services. Building networks to strengthen and increase participation
    in the food system of indigenous people in the Asia Pacific region.
- source_sentence: What is the largest water-consuming sector in Australia's economy?
  sentences:
  - Navarrot holds a Minor in Sustainability Studies.
  - Australia’s agricultural sector is the largest water consuming sector in the economy,
    accounting for 65 percent of total consumption in 2005. In the Murray-Darling
    Basin, climate change will lead to decreased water levels and difficulties meeting
    demand for irrigation while maintaining environmental flows. Additionally, vegetation
    will consume more water under higher temperatures.
  - The project contributes to the implementation of the APEC Food Security Roadmap
    Towards 2030, focusing on food production, processing, and distribution. It includes
    targets such as improving food system related digital literacy, promoting public-private
    investment, modernizing food storage facilities, and sharing best practices among
    APEC economies.
- source_sentence: How would you use anaerobic digestion to reduce landfill reliance
    in a city?
  sentences:
  - 'Innovation Approach: Technologies like anaerobic digestion and microbial transformation
    create biogas and animal feed, turning waste into valuable resources and reducing
    landfill reliance.'
  - The initiative started from the previous satellite communication project that
    ITU implemented in the Pacific. ITU provided 9 economies with 93 units of satellite
    ground stations, so the remote islands were connected with the satellites. For
    the islands, the satellites became essential communication means when disaster
    hits the region. For instance, when the hurricane hit in 2020, the satellite ground
    stations were the only communication means when the economies tried to initiate
    the disaster response efforts during the Covid lockdown. Additionally, according
    to ITU’s assessment, this communication means were used by communities and remote
    and previously unconnected communities for education and health, and to provide
    and receive government services.
  - Mexico cited changes to the lengths of growing seasons, with increased temperatures
    leading to shorter growing seasons in traditional agricultural areas as temperatures
    become too extreme for both crops and livestock.
- source_sentence: What would happen if APEC economies failed to coordinate across
    borders?
  sentences:
  - APEC economies must co-ordinate across borders to facilitate services. The greater
    the coherence between industry and governments, the greater the likelihood of
    success.
  - Another key issue she made clear about the food systems was the transaction costs.
    To unlock the potential of the food systems, the transaction costs issues should
    be addressed. These transactions are all over the food systems. They are encouraged
    by farmers, their business partners to find each other, make deals and ensure
    that these deals are enforced. While the transactions being essential to the production
    of goods, the costs following them drive farmers to choose quantity over quality
    at the expense of the environment, which ultimately affect consumers product choices.
  - '• Mortality risk: lack of real time data to react.

    • Yield optimization: no proper water quality data for yield optimization.'
- source_sentence: Identify the main goal of closing resource loops.
  sentences:
  - Closing resource loops aims to create new value through the reuse and recycling
    of used materials.
  - Shelf life can be extended up to 18 month, would this violate the expiration date?
  - Closing resource loops aims to create new value through the reuse and recycling
    of used materials.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on intfloat/e5-base-v2
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.7447643979057592
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8992146596858639
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.93717277486911
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9607329842931938
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7447643979057592
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32504363001745196
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20863874345549735
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10863874345549739
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6882635253054101
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8697643979057592
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9212478184991274
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9526614310645725
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.849824960377896
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8267877919055926
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8125610657293678
      name: Cosine Map@100
---

# SentenceTransformer based on intfloat/e5-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision f52bf8ec8c7124536f0efb74aca902b2995e5bcd -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Identify the main goal of closing resource loops.',
    'Closing resource loops aims to create new value through the reuse and recycling of used materials.',
    'Shelf life can be extended up to 18 month, would this violate the expiration date?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8682, 0.4450],
#         [0.8682, 1.0000, 0.4960],
#         [0.4450, 0.4960, 1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7448     |
| cosine_accuracy@3   | 0.8992     |
| cosine_accuracy@5   | 0.9372     |
| cosine_accuracy@10  | 0.9607     |
| cosine_precision@1  | 0.7448     |
| cosine_precision@3  | 0.325      |
| cosine_precision@5  | 0.2086     |
| cosine_precision@10 | 0.1086     |
| cosine_recall@1     | 0.6883     |
| cosine_recall@3     | 0.8698     |
| cosine_recall@5     | 0.9212     |
| cosine_recall@10    | 0.9527     |
| **cosine_ndcg@10**  | **0.8498** |
| cosine_mrr@10       | 0.8268     |
| cosine_map@100      | 0.8126     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 3,056 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 82.66 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                             | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>How does the proximity of energy generation to consumption benefit floating solar plants?</code> | <code>What are the benefits of using a floating solar plant? At first, the interest is the use solar energy to generate electricity. The performance peak of solar panels is at 25 degrees Celcius, anything above generates a performance loss of 0.4%. Thus, when using water as a cooling system, the photovoltaic panel stays close to 25 degrees. Another aspect to consider is the point of energy consumption, which is close to the generation point.</code> |
  | <code>Who won the Chilean award for women entrepreneurs at the regional level?</code>                  | <code>Mrs Curumilla won the Chilean award for women entrepreneurs at the regional level.</code>                                                                                                                                                                                                                                                                                                                                                                      |
  | <code>How did the follow-up survey contribute to the establishment of working groups?</code>           | <code>The answers and interventions collected from the survey helped establish the different working groups and address common challenges in the workshop.</code>                                                                                                                                                                                                                                                                                                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          384,
          256
      ],
      "matryoshka_weights": [
          1.0,
          0.8,
          0.6,
          0.4
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | cosine_ndcg@10 |
|:------:|:----:|:--------------:|
| 0.7812 | 100  | 0.7980         |
| 1.0    | 128  | 0.8078         |
| 1.5625 | 200  | 0.8259         |
| 2.0    | 256  | 0.8463         |
| 2.3438 | 300  | 0.8446         |
| 3.0    | 384  | 0.8483         |
| 3.125  | 400  | 0.8498         |


### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.0
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->