Distill Any Depth Small - Transformers Version
Introduction
We present Distill-Any-Depth, a new SOTA monocular depth estimation model trained with our proposed knowledge distillation algorithms. It was introduced in the paper Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator.
This model checkpoint is compatible with the transformers library.
How to use
Here is how to use this model to perform zero-shot depth estimation:
from transformers import pipeline
from PIL import Image
import requests
# load pipe
pipe = pipeline(task="depth-estimation", model="xingyang1/Distill-Any-Depth-Small-hf")
# load image
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
# inference
depth = pipe(image)["depth"]
Alternatively, you can use the model and processor classes:
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
import torch
import numpy as np
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained("xingyang1/Distill-Any-Depth-Small-hf")
model = AutoModelForDepthEstimation.from_pretrained("xingyang1/Distill-Any-Depth-Small-hf")
# prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# interpolate to original size and visualize the prediction
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
target_sizes=[(image.height, image.width)],
)
predicted_depth = post_processed_output[0]["predicted_depth"]
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
depth = depth.detach().cpu().numpy() * 255
depth = Image.fromarray(depth.astype("uint8"))
)
If you find this project useful, please consider citing:
@article{he2025distill,
title = {Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator},
author = {Xiankang He and Dongyan Guo and Hongji Li and Ruibo Li and Ying Cui and Chi Zhang},
year = {2025},
journal = {arXiv preprint arXiv: 2502.19204}
}
Model Card Author
- Downloads last month
- 22
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support