Transformers
PyTorch
Inference Endpoints
xiuyul's picture
Upload folder using huggingface_hub
debca9a
metadata
license: apache-2.0
base_model: state-spaces/mamba-2.8b-slimpj
datasets:
  - HuggingFaceH4/ultrachat_200k
model-index:
  - name: mamba-2.8b-ultrachat
    results: []

mamba-2.8b-ultrachat

This model is a fine-tuned version of state-spaces/mamba-2.8b-slimpj on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1858

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 512
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.0106 0.0 1 1.9092
1.1783 0.62 250 1.1858

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1