czert_lr2e-05_bs4_train150
This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2054
- Precision: 0.9023
- Recall: 0.9073
- F1: 0.9048
- Accuracy: 0.9463
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 38 | 0.4712 | 0.7379 | 0.6987 | 0.7178 | 0.8556 |
No log | 2.0 | 76 | 0.2761 | 0.8550 | 0.8455 | 0.8502 | 0.9201 |
No log | 3.0 | 114 | 0.2196 | 0.8790 | 0.8841 | 0.8816 | 0.9353 |
No log | 4.0 | 152 | 0.2077 | 0.8855 | 0.8889 | 0.8872 | 0.9404 |
No log | 5.0 | 190 | 0.1977 | 0.8970 | 0.9000 | 0.8985 | 0.9447 |
No log | 6.0 | 228 | 0.1957 | 0.9087 | 0.8938 | 0.9012 | 0.9468 |
No log | 7.0 | 266 | 0.1952 | 0.9129 | 0.9054 | 0.9091 | 0.9514 |
No log | 8.0 | 304 | 0.2117 | 0.9196 | 0.9005 | 0.9100 | 0.9500 |
No log | 9.0 | 342 | 0.2235 | 0.9108 | 0.9073 | 0.9090 | 0.9508 |
No log | 10.0 | 380 | 0.2222 | 0.9143 | 0.9068 | 0.9105 | 0.9514 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for xkaska02/czert_lr2e-05_bs4_train150
Base model
UWB-AIR/Czert-B-base-cased