czert_lr2e-05_bs4_train287_cl_size1
This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1610
- Precision: 0.9154
- Recall: 0.9201
- F1: 0.9177
- Accuracy: 0.9536
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 72 | 0.2943 | 0.8368 | 0.8445 | 0.8407 | 0.9150 |
No log | 2.0 | 144 | 0.1835 | 0.8928 | 0.8972 | 0.8950 | 0.9437 |
No log | 3.0 | 216 | 0.1682 | 0.9165 | 0.8957 | 0.9060 | 0.9483 |
No log | 4.0 | 288 | 0.1505 | 0.9275 | 0.9198 | 0.9236 | 0.9579 |
No log | 5.0 | 360 | 0.1541 | 0.9288 | 0.9194 | 0.9240 | 0.9571 |
No log | 6.0 | 432 | 0.1790 | 0.9210 | 0.9227 | 0.9219 | 0.9565 |
0.1826 | 7.0 | 504 | 0.1671 | 0.9290 | 0.9165 | 0.9227 | 0.9567 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for xkaska02/czert_lr2e-05_bs4_train287_cl_size1
Base model
UWB-AIR/Czert-B-base-cased