czert_lr2e-05_bs4_train287_label_subtokens_True
This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1645
- Precision: 0.9160
- Recall: 0.9238
- F1: 0.9199
- Accuracy: 0.9511
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 72 | 0.3419 | 0.7963 | 0.8314 | 0.8135 | 0.8916 |
No log | 2.0 | 144 | 0.2228 | 0.8825 | 0.8749 | 0.8787 | 0.9313 |
No log | 3.0 | 216 | 0.1958 | 0.9152 | 0.8782 | 0.8963 | 0.9401 |
No log | 4.0 | 288 | 0.1799 | 0.9264 | 0.9014 | 0.9137 | 0.9499 |
No log | 5.0 | 360 | 0.1672 | 0.9247 | 0.9096 | 0.9171 | 0.9511 |
No log | 6.0 | 432 | 0.1682 | 0.9335 | 0.9151 | 0.9242 | 0.9559 |
0.2129 | 7.0 | 504 | 0.1914 | 0.9390 | 0.9130 | 0.9259 | 0.9562 |
0.2129 | 8.0 | 576 | 0.1890 | 0.9323 | 0.9182 | 0.9252 | 0.9571 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for xkaska02/czert_lr2e-05_bs4_train287_label_subtokens_True
Base model
UWB-AIR/Czert-B-base-cased