xkaska02's picture
End of training
3882703 verified
metadata
library_name: transformers
base_model: UWB-AIR/Czert-B-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: czert_lr2e-05_bs4_train287_max_len256_2layers
    results: []

czert_lr2e-05_bs4_train287_max_len256_2layers

This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1713
  • Precision: 0.9107
  • Recall: 0.9212
  • F1: 0.9159
  • Accuracy: 0.9513

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 72 0.5136 0.6578 0.6470 0.6524 0.8319
No log 2.0 144 0.2634 0.8669 0.8682 0.8676 0.9286
No log 3.0 216 0.2205 0.9024 0.8749 0.8885 0.9389
No log 4.0 288 0.1857 0.9059 0.8976 0.9018 0.9464
No log 5.0 360 0.1767 0.9111 0.9058 0.9085 0.9508
No log 6.0 432 0.1698 0.9216 0.9198 0.9207 0.9552
0.2996 7.0 504 0.1674 0.9266 0.9198 0.9232 0.9571

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.20.0