|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: ufal/robeczech-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: robeczech_lr2e-05_bs4_train5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robeczech_lr2e-05_bs4_train5 |
|
|
|
This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1314 |
|
- Precision: 0.5641 |
|
- Recall: 0.3322 |
|
- F1: 0.4181 |
|
- Accuracy: 0.7120 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 2 | 2.3031 | 0.0870 | 0.0068 | 0.0125 | 0.5628 | |
|
| No log | 2.0 | 4 | 2.0883 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 3.0 | 6 | 1.9029 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 4.0 | 8 | 1.7831 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 5.0 | 10 | 1.7223 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 6.0 | 12 | 1.6812 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 7.0 | 14 | 1.6437 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 8.0 | 16 | 1.6091 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 9.0 | 18 | 1.5787 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 10.0 | 20 | 1.5511 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 11.0 | 22 | 1.5191 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 12.0 | 24 | 1.4842 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 13.0 | 26 | 1.4505 | 0.5 | 0.0005 | 0.0010 | 0.5668 | |
|
| No log | 14.0 | 28 | 1.4157 | 0.6522 | 0.0072 | 0.0143 | 0.5697 | |
|
| No log | 15.0 | 30 | 1.3825 | 0.54 | 0.0130 | 0.0255 | 0.5722 | |
|
| No log | 16.0 | 32 | 1.3515 | 0.6047 | 0.0251 | 0.0482 | 0.5774 | |
|
| No log | 17.0 | 34 | 1.3216 | 0.6333 | 0.0459 | 0.0855 | 0.5862 | |
|
| No log | 18.0 | 36 | 1.2934 | 0.6038 | 0.0773 | 0.1370 | 0.5996 | |
|
| No log | 19.0 | 38 | 1.2691 | 0.5943 | 0.1202 | 0.2 | 0.6183 | |
|
| No log | 20.0 | 40 | 1.2459 | 0.5925 | 0.1685 | 0.2624 | 0.6388 | |
|
| No log | 21.0 | 42 | 1.2255 | 0.6032 | 0.2202 | 0.3226 | 0.6601 | |
|
| No log | 22.0 | 44 | 1.2094 | 0.5925 | 0.2380 | 0.3396 | 0.6679 | |
|
| No log | 23.0 | 46 | 1.1961 | 0.5969 | 0.2603 | 0.3625 | 0.6773 | |
|
| No log | 24.0 | 48 | 1.1865 | 0.5931 | 0.2646 | 0.3659 | 0.6792 | |
|
| No log | 25.0 | 50 | 1.1778 | 0.5944 | 0.2767 | 0.3776 | 0.6840 | |
|
| No log | 26.0 | 52 | 1.1686 | 0.6022 | 0.2931 | 0.3943 | 0.6909 | |
|
| No log | 27.0 | 54 | 1.1594 | 0.5837 | 0.3047 | 0.4004 | 0.6957 | |
|
| No log | 28.0 | 56 | 1.1532 | 0.5717 | 0.3100 | 0.4020 | 0.6978 | |
|
| No log | 29.0 | 58 | 1.1496 | 0.5688 | 0.3153 | 0.4057 | 0.6995 | |
|
| No log | 30.0 | 60 | 1.1481 | 0.5654 | 0.3192 | 0.4080 | 0.7007 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.7.0+cu126 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |
|
|