|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: ufal/robeczech-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: robeczech_lr3e-05_bs16_train30 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robeczech_lr3e-05_bs16_train30 |
|
|
|
This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7524 |
|
- Precision: 0.6957 |
|
- Recall: 0.7042 |
|
- F1: 0.6999 |
|
- Accuracy: 0.8581 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 2 | 2.1827 | 0.0789 | 0.0029 | 0.0056 | 0.5672 | |
|
| No log | 2.0 | 4 | 1.8547 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 3.0 | 6 | 1.7184 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 4.0 | 8 | 1.6366 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 5.0 | 10 | 1.5608 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 6.0 | 12 | 1.4897 | 0.0 | 0.0 | 0.0 | 0.5666 | |
|
| No log | 7.0 | 14 | 1.4198 | 0.5 | 0.0048 | 0.0096 | 0.5686 | |
|
| No log | 8.0 | 16 | 1.3505 | 0.4098 | 0.0121 | 0.0235 | 0.5718 | |
|
| No log | 9.0 | 18 | 1.2871 | 0.3481 | 0.0227 | 0.0426 | 0.5764 | |
|
| No log | 10.0 | 20 | 1.2321 | 0.3907 | 0.0526 | 0.0928 | 0.5892 | |
|
| No log | 11.0 | 22 | 1.1821 | 0.4436 | 0.1347 | 0.2067 | 0.6235 | |
|
| No log | 12.0 | 24 | 1.1378 | 0.4340 | 0.2685 | 0.3317 | 0.6789 | |
|
| No log | 13.0 | 26 | 1.0951 | 0.4228 | 0.3317 | 0.3718 | 0.7041 | |
|
| No log | 14.0 | 28 | 1.0571 | 0.4412 | 0.3877 | 0.4127 | 0.7265 | |
|
| No log | 15.0 | 30 | 1.0247 | 0.4677 | 0.4433 | 0.4551 | 0.7461 | |
|
| No log | 16.0 | 32 | 0.9942 | 0.5116 | 0.4915 | 0.5014 | 0.7662 | |
|
| No log | 17.0 | 34 | 0.9657 | 0.5523 | 0.5278 | 0.5398 | 0.7830 | |
|
| No log | 18.0 | 36 | 0.9422 | 0.5946 | 0.5645 | 0.5791 | 0.7997 | |
|
| No log | 19.0 | 38 | 0.9165 | 0.6177 | 0.6007 | 0.6091 | 0.8144 | |
|
| No log | 20.0 | 40 | 0.8933 | 0.6319 | 0.6340 | 0.6329 | 0.8248 | |
|
| No log | 21.0 | 42 | 0.8715 | 0.6493 | 0.6552 | 0.6522 | 0.8336 | |
|
| No log | 22.0 | 44 | 0.8489 | 0.6654 | 0.6644 | 0.6649 | 0.8391 | |
|
| No log | 23.0 | 46 | 0.8303 | 0.6819 | 0.6707 | 0.6762 | 0.8451 | |
|
| No log | 24.0 | 48 | 0.8136 | 0.6873 | 0.6760 | 0.6816 | 0.8472 | |
|
| No log | 25.0 | 50 | 0.8005 | 0.6881 | 0.6871 | 0.6876 | 0.8506 | |
|
| No log | 26.0 | 52 | 0.7916 | 0.6884 | 0.6944 | 0.6913 | 0.8512 | |
|
| No log | 27.0 | 54 | 0.7836 | 0.6913 | 0.6997 | 0.6955 | 0.8529 | |
|
| No log | 28.0 | 56 | 0.7764 | 0.6934 | 0.7001 | 0.6968 | 0.8539 | |
|
| No log | 29.0 | 58 | 0.7714 | 0.6961 | 0.7011 | 0.6986 | 0.8550 | |
|
| No log | 30.0 | 60 | 0.7693 | 0.6984 | 0.7021 | 0.7002 | 0.8560 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |
|
|