Visual Prompt Checkpoints for NR-IQA

πŸ”¬ Paper: Parameter-Efficient Adaptation of mPLUG-Owl2 via Pixel-Level Visual Prompts for NR-IQA (will be released soon) πŸ’» Code: GitHub Repository

Overview

Pre-trained visual prompt checkpoints for No-Reference Image Quality Assessment (NR-IQA) using mPLUG-Owl2-7B. Achieves competitive performance with only ~600K parameters vs 7B+ for full fine-tuning.

Available Checkpoints

Download: visual_prompt_ckpt_trained_on_mplug2.zip

Dataset SROCC Experiment Folder
KADID-10k 0.932 SGD_mplug2_exp_04_kadid_padding_30px_add/
KonIQ-10k 0.852 SGD_mplug2_exp_05_koniq_padding_30px_add/
AGIQA-3k 0.810 SGD_mplug2_exp_06_agiqa_padding_30px_add/

πŸ“– For detailed setup, training, and usage instructions, see the GitHub repository.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train yahya007/mplug2-vp-for-nriqa