SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-sts-dataset-v1 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/allstats-search-mini-v1-1-mnrl
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-1")
# Run inference
sentences = [
'PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi dunia.',
'The Riau Islands province is known for its beautiful beaches and marine tourism.',
'Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.8599 | 0.8885 |
spearman_cosine | 0.8569 | 0.8818 |
Training Details
Training Dataset
bps-sts-dataset-v1
- Dataset: bps-sts-dataset-v1 at 5c8f96e
- Size: 2,436 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 20.49 tokens
- max: 36 tokens
- min: 9 tokens
- mean: 20.71 tokens
- max: 45 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score bagaimana capaian Tujuan Pembangunan Berkelanjutan di Indonesia?
Laporan Pencapaian Indikator Tujuan Pembangunan Berkelanjutan (TPB/SDGs) Indonesia, Edisi 2024
0.8
Jumlah perpustakaan umum di Indonesia tahun 2022 sebanyak 170.000 unit.
Minat baca masyarakat Indonesia masih perlu ditingkatkan melalui berbagai program literasi.
0.4
Jumlah sekolah negeri jenjang SMP di Kota Bandar Lampung adalah 30 sekolah.
Laju deforestasi di Provinsi Kalimantan Tengah masih mengkhawatirkan.
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-sts-dataset-v1
- Dataset: bps-sts-dataset-v1 at 5c8f96e
- Size: 522 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 522 samples:
sentence1 sentence2 score type string string float details - min: 9 tokens
- mean: 20.83 tokens
- max: 39 tokens
- min: 8 tokens
- mean: 20.84 tokens
- max: 44 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score Persentase desa yang memiliki fasilitas internet di Provinsi Y pada tahun 2021 adalah 85%.
Luas perkebunan kelapa sawit di Provinsi Y pada tahun 2021 adalah 500.000 hektar.
0.2
Kontribusi sektor UMKM terhadap PDRB Kota Malang pada tahun 2023 sebesar 60%.
Usaha Mikro, Kecil, dan Menengah menyumbang 60 persen terhadap total Produk Domestik Regional Bruto di kota pendidikan Malang pada tahun 2023.
1.0
Jumlah Industri Kecil dan Menengah (IKM) di Kabupaten Tegal, Jawa Tengah, bertambah 200 unit pada tahun 2024.
Di Tegal, sebuah kabupaten di Jateng, terjadi penambahan 200 unit IKM sepanjang tahun 2024.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 1e-05num_train_epochs
: 6warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truelabel_smoothing_factor
: 0.01eval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.01optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 0.0588 | 0.7404 | - |
0.0654 | 10 | 0.0541 | 0.0586 | 0.7412 | - |
0.1307 | 20 | 0.0546 | 0.0579 | 0.7444 | - |
0.1961 | 30 | 0.0441 | 0.0565 | 0.7500 | - |
0.2614 | 40 | 0.0503 | 0.0546 | 0.7580 | - |
0.3268 | 50 | 0.0546 | 0.0528 | 0.7648 | - |
0.3922 | 60 | 0.0538 | 0.0509 | 0.7739 | - |
0.4575 | 70 | 0.0455 | 0.0490 | 0.7834 | - |
0.5229 | 80 | 0.0471 | 0.0472 | 0.7925 | - |
0.5882 | 90 | 0.0417 | 0.0455 | 0.8017 | - |
0.6536 | 100 | 0.0427 | 0.0441 | 0.8095 | - |
0.7190 | 110 | 0.0445 | 0.0432 | 0.8138 | - |
0.7843 | 120 | 0.0382 | 0.0425 | 0.8168 | - |
0.8497 | 130 | 0.0443 | 0.0413 | 0.8220 | - |
0.9150 | 140 | 0.0449 | 0.0405 | 0.8264 | - |
0.9804 | 150 | 0.0407 | 0.0401 | 0.8287 | - |
1.0458 | 160 | 0.0377 | 0.0400 | 0.8312 | - |
1.1111 | 170 | 0.0285 | 0.0392 | 0.8327 | - |
1.1765 | 180 | 0.033 | 0.0389 | 0.8329 | - |
1.2418 | 190 | 0.0299 | 0.0388 | 0.8331 | - |
1.3072 | 200 | 0.029 | 0.0387 | 0.8333 | - |
1.3725 | 210 | 0.031 | 0.0384 | 0.8340 | - |
1.4379 | 220 | 0.0274 | 0.0384 | 0.8351 | - |
1.5033 | 230 | 0.0312 | 0.0382 | 0.8367 | - |
1.5686 | 240 | 0.0301 | 0.0378 | 0.8383 | - |
1.6340 | 250 | 0.0304 | 0.0375 | 0.8390 | - |
1.6993 | 260 | 0.0226 | 0.0374 | 0.8389 | - |
1.7647 | 270 | 0.0264 | 0.0373 | 0.8399 | - |
1.8301 | 280 | 0.0295 | 0.0370 | 0.8418 | - |
1.8954 | 290 | 0.0298 | 0.0368 | 0.8419 | - |
1.9608 | 300 | 0.0291 | 0.0366 | 0.8422 | - |
2.0261 | 310 | 0.0279 | 0.0365 | 0.8426 | - |
2.0915 | 320 | 0.0231 | 0.0363 | 0.8432 | - |
2.1569 | 330 | 0.0249 | 0.0361 | 0.8446 | - |
2.2222 | 340 | 0.0253 | 0.0359 | 0.8454 | - |
2.2876 | 350 | 0.024 | 0.0358 | 0.8463 | - |
2.3529 | 360 | 0.0239 | 0.0357 | 0.8471 | - |
2.4183 | 370 | 0.0222 | 0.0355 | 0.8473 | - |
2.4837 | 380 | 0.0284 | 0.0354 | 0.8476 | - |
2.5490 | 390 | 0.0176 | 0.0353 | 0.8486 | - |
2.6144 | 400 | 0.0184 | 0.0352 | 0.8489 | - |
2.6797 | 410 | 0.023 | 0.0351 | 0.8495 | - |
2.7451 | 420 | 0.0201 | 0.0351 | 0.8494 | - |
2.8105 | 430 | 0.0252 | 0.0351 | 0.8499 | - |
2.8758 | 440 | 0.0206 | 0.0350 | 0.8503 | - |
2.9412 | 450 | 0.0188 | 0.0350 | 0.8499 | - |
3.0065 | 460 | 0.017 | 0.0348 | 0.8501 | - |
3.0719 | 470 | 0.0174 | 0.0347 | 0.8505 | - |
3.1373 | 480 | 0.0171 | 0.0345 | 0.8515 | - |
3.2026 | 490 | 0.0226 | 0.0344 | 0.8520 | - |
3.2680 | 500 | 0.0233 | 0.0344 | 0.8520 | - |
3.3333 | 510 | 0.0177 | 0.0344 | 0.8523 | - |
3.3987 | 520 | 0.0155 | 0.0343 | 0.8522 | - |
3.4641 | 530 | 0.0155 | 0.0344 | 0.8522 | - |
3.5294 | 540 | 0.0249 | 0.0343 | 0.8523 | - |
3.5948 | 550 | 0.0177 | 0.0343 | 0.8522 | - |
3.6601 | 560 | 0.0149 | 0.0343 | 0.8520 | - |
3.7255 | 570 | 0.0178 | 0.0343 | 0.8517 | - |
3.7908 | 580 | 0.0181 | 0.0343 | 0.8520 | - |
3.8562 | 590 | 0.018 | 0.0342 | 0.8525 | - |
3.9216 | 600 | 0.0178 | 0.0341 | 0.8525 | - |
3.9869 | 610 | 0.0225 | 0.0340 | 0.8530 | - |
4.0523 | 620 | 0.0194 | 0.0339 | 0.8541 | - |
4.1176 | 630 | 0.0145 | 0.0338 | 0.8548 | - |
4.1830 | 640 | 0.0151 | 0.0337 | 0.8554 | - |
4.2484 | 650 | 0.0187 | 0.0336 | 0.8560 | - |
4.3137 | 660 | 0.0142 | 0.0336 | 0.8561 | - |
4.3791 | 670 | 0.0162 | 0.0336 | 0.8557 | - |
4.4444 | 680 | 0.0167 | 0.0335 | 0.8558 | - |
4.5098 | 690 | 0.013 | 0.0335 | 0.8555 | - |
4.5752 | 700 | 0.0174 | 0.0336 | 0.8555 | - |
4.6405 | 710 | 0.0156 | 0.0336 | 0.8556 | - |
4.7059 | 720 | 0.0155 | 0.0336 | 0.8555 | - |
4.7712 | 730 | 0.0179 | 0.0336 | 0.8553 | - |
4.8366 | 740 | 0.0158 | 0.0335 | 0.8553 | - |
4.9020 | 750 | 0.0143 | 0.0335 | 0.8553 | - |
4.9673 | 760 | 0.019 | 0.0335 | 0.8557 | - |
5.0327 | 770 | 0.0143 | 0.0334 | 0.8559 | - |
5.0980 | 780 | 0.0136 | 0.0334 | 0.8559 | - |
5.1634 | 790 | 0.0138 | 0.0334 | 0.8560 | - |
5.2288 | 800 | 0.0134 | 0.0333 | 0.8561 | - |
5.2941 | 810 | 0.0173 | 0.0333 | 0.8563 | - |
5.3595 | 820 | 0.0128 | 0.0333 | 0.8562 | - |
5.4248 | 830 | 0.0145 | 0.0333 | 0.8564 | - |
5.4902 | 840 | 0.0153 | 0.0333 | 0.8566 | - |
5.5556 | 850 | 0.0166 | 0.0333 | 0.8566 | - |
5.6209 | 860 | 0.0179 | 0.0332 | 0.8569 | - |
5.6863 | 870 | 0.0151 | 0.0332 | 0.8569 | - |
5.7516 | 880 | 0.0168 | 0.0332 | 0.8570 | - |
5.8170 | 890 | 0.0129 | 0.0332 | 0.8570 | - |
5.8824 | 900 | 0.015 | 0.0332 | 0.8569 | - |
5.9477 | 910 | 0.0148 | 0.0332 | 0.8569 | - |
-1 | -1 | - | - | - | 0.8818 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/allstats-search-mini-v1-1-mnrl-1
Finetuned
yahyaabd/allstats-search-mini-v1-1-mnrl
Dataset used to train yahyaabd/allstats-search-mini-v1-1-mnrl-1
Evaluation results
- Pearson Cosine on sts devself-reported0.860
- Spearman Cosine on sts devself-reported0.857
- Pearson Cosine on sts testself-reported0.888
- Spearman Cosine on sts testself-reported0.882