SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-pub-cosine-pairs dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/allstats-search-mini-v1-1-mnrl
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v2")
# Run inference
sentences = [
'q-786',
'Angka Kematian Bayi oper P#rovinsi',
'f3b02f2b6706e104ea9d5b74',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.9041 | 0.9069 |
spearman_cosine | 0.8335 | 0.8381 |
Training Details
Training Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at 038a9de
- Size: 64,260 training samples
- Columns:
query_id
,query
,corpus_id
,title
, andscore
- Approximate statistics based on the first 1000 samples:
query_id query corpus_id title score type string string string string float details - min: 4 tokens
- mean: 5.18 tokens
- max: 6 tokens
- min: 4 tokens
- mean: 13.33 tokens
- max: 38 tokens
- min: 7 tokens
- mean: 17.38 tokens
- max: 22 tokens
- min: 5 tokens
- mean: 13.13 tokens
- max: 30 tokens
- min: 0.1
- mean: 0.56
- max: 0.9
- Samples:
query_id query corpus_id title score q-1599
Nilai Tukar Nelayan
0b0da8fc2b6af9329a6d9cfe
Statistik Hotel dan Akomodasi Lainnya di Indonesia 2013
0.1
q-1599
nilai tukar nelayan
0b0da8fc2b6af9329a6d9cfe
Statistik Hotel dan Akomodasi Lainnya di Indonesia 2013
0.1
q-1599
NILAI TUKAR NELAYAN
0b0da8fc2b6af9329a6d9cfe
Statistik Hotel dan Akomodasi Lainnya di Indonesia 2013
0.1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at 038a9de
- Size: 8,067 evaluation samples
- Columns:
query_id
,query
,corpus_id
,title
, andscore
- Approximate statistics based on the first 1000 samples:
query_id query corpus_id title score type string string string string float details - min: 4 tokens
- mean: 5.2 tokens
- max: 6 tokens
- min: 4 tokens
- mean: 12.77 tokens
- max: 33 tokens
- min: 13 tokens
- mean: 17.25 tokens
- max: 23 tokens
- min: 5 tokens
- mean: 13.37 tokens
- max: 38 tokens
- min: 0.1
- mean: 0.57
- max: 0.9
- Samples:
query_id query corpus_id title score q-1273
Sosek Desember 2021
b7890a143bc751d1d84dcf4a
Laporan Bulanan Data Sosial Ekonomi Desember 2021
0.9
q-1273
sosek desember 2021
b7890a143bc751d1d84dcf4a
Laporan Bulanan Data Sosial Ekonomi Desember 2021
0.9
q-1273
SOSEK DESEMBER 2021
b7890a143bc751d1d84dcf4a
Laporan Bulanan Data Sosial Ekonomi Desember 2021
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 1e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truelabel_smoothing_factor
: 0.01eval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.01optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 0.3848 | 0.8288 | - |
0.0995 | 100 | 0.236 | 0.0950 | 0.8396 | - |
0.1990 | 200 | 0.0655 | 0.0487 | 0.8452 | - |
0.2985 | 300 | 0.0407 | 0.0342 | 0.8437 | - |
0.3980 | 400 | 0.0309 | 0.0291 | 0.8427 | - |
0.4975 | 500 | 0.0247 | 0.0253 | 0.8427 | - |
0.5970 | 600 | 0.0211 | 0.0235 | 0.8427 | - |
0.6965 | 700 | 0.0198 | 0.0224 | 0.8395 | - |
0.7960 | 800 | 0.0168 | 0.0212 | 0.8405 | - |
0.8955 | 900 | 0.0166 | 0.0206 | 0.8384 | - |
0.9950 | 1000 | 0.0145 | 0.0195 | 0.8388 | - |
1.0945 | 1100 | 0.0119 | 0.0193 | 0.8395 | - |
1.1940 | 1200 | 0.0113 | 0.0190 | 0.8376 | - |
1.2935 | 1300 | 0.0108 | 0.0189 | 0.8330 | - |
1.3930 | 1400 | 0.0119 | 0.0180 | 0.8364 | - |
1.4925 | 1500 | 0.0105 | 0.0184 | 0.8338 | - |
1.5920 | 1600 | 0.0092 | 0.0180 | 0.8355 | - |
1.6915 | 1700 | 0.009 | 0.0182 | 0.8319 | - |
1.7910 | 1800 | 0.0096 | 0.0178 | 0.8337 | - |
1.8905 | 1900 | 0.0099 | 0.0178 | 0.8326 | - |
1.99 | 2000 | 0.0094 | 0.0178 | 0.8335 | - |
-1 | -1 | - | - | - | 0.8381 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 27
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/allstats-search-mini-v2
Finetuned
yahyaabd/allstats-search-mini-v1-1-mnrl
Dataset used to train yahyaabd/allstats-search-mini-v2
Evaluation results
- Pearson Cosine on sts devself-reported0.904
- Spearman Cosine on sts devself-reported0.833
- Pearson Cosine on sts testself-reported0.907
- Spearman Cosine on sts testself-reported0.838