camembert-keyword-extractor

This model is a fine-tuned version of camembert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2199
  • Precision: 0.6743
  • Recall: 0.6979
  • Accuracy: 0.9346
  • F1: 0.6859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
0.1747 1.0 1875 0.1780 0.5935 0.7116 0.9258 0.6472
0.1375 2.0 3750 0.1588 0.6505 0.7032 0.9334 0.6759
0.1147 3.0 5625 0.1727 0.6825 0.6689 0.9355 0.6756
0.0969 4.0 7500 0.1759 0.6886 0.6621 0.9350 0.6751
0.0837 5.0 9375 0.1967 0.6688 0.7112 0.9348 0.6893
0.0746 6.0 11250 0.2088 0.6646 0.7114 0.9334 0.6872
0.0666 7.0 13125 0.2169 0.6713 0.7054 0.9347 0.6879
0.0634 8.0 15000 0.2199 0.6743 0.6979 0.9346 0.6859

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
96,914
Inference API