smartmind-cyberone-20250402

This model is a fine-tuned version of PowerInfer/SmallThinker-3B-Preview on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.3817 0.3527 30 0.2134
0.1292 0.7054 60 0.0959
0.0931 1.0470 90 0.3264
0.125 1.3997 120 0.0485
0.057 1.7524 150 0.0569
0.0503 2.0940 180 0.0444
0.0444 2.4467 210 0.0426
0.0405 2.7994 240 0.0346
0.0472 3.1411 270 0.0614
0.045 3.4938 300 0.0406
0.0405 3.8464 330 0.0328
0.0345 4.1881 360 0.0300
0.0333 4.5408 390 0.0363
0.0325 4.8935 420 0.0308

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
3.09B params
Tensor type
FP16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yangwooko/smartmind-cyberone-20250402

Base model

Qwen/Qwen2.5-3B
Finetuned
(13)
this model