File size: 1,815 Bytes
23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf 23f5fe6 3ea6ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language: en
license: apache-2.0
library_name: transformers
pipeline_tag: token-classification
tags:
- resume-parsing
- named-entity-recognition
- ner
- bert
- information-extraction
widget:
- text: "John Doe is a Software Engineer at Google. Email: [email protected], Phone: +1-555-123-4567"
example_title: "Resume Information Extraction"
---
# Resume NER Model
A fine-tuned BERT model for Named Entity Recognition (NER) specifically designed for resume/CV parsing and information extraction.
## Model Description
This model is based on `bert-base-cased` and has been fine-tuned to extract key information from resume documents including:
- label_to_id
- id_to_label
## Performance
| Metric | Score |
|--------|-------|
| F1 Score | 0.7128521806252412 |
| Precision | 0.6843275287143387 |
| Recall | 0.7438582360048329 |
| Accuracy | 0.9482567433286769 |
## Usage
```python
from transformers import pipeline
# Load the model
ner_pipeline = pipeline(
"ner",
model="yashpwr/resume-ner-bert",
aggregation_strategy="simple"
)
# Extract entities from resume text
text = "John Doe is a Software Engineer at Google. Email: [email protected]"
results = ner_pipeline(text)
for entity in results:
print(f"{entity['word']}: {entity['entity_group']} ({entity['score']:.3f})")
```
## Training Data
- Training samples: 576
- Validation samples: 144
- Epochs: 3
## Intended Use
This model is designed for:
- Resume parsing systems
- HR automation tools
- Recruitment platforms
- Document processing pipelines
## Limitations
- Optimized specifically for resume/CV documents
- Performance may vary on other document types
- Requires preprocessing for best results
## Model Details
- Base model: `bert-base-cased`
- Model size: ~110M parameters
- Language: English
- License: Apache 2.0
|