Arabic Relation Extraction Model

  • Github repo
  • Relation Extraction model based on GigaBERTv4.
  • Model detail: mark two entities in the sentence with special markers (e.g., XXXX <PER> entity1 </PER> XXXXXXX <ORG> entity2 </ORG> XXXXX). Then we use the BERT [CLS] representation to make a prediction.
  • ACE2005 Training data: Arabic
  • Relation tags including: Physical, Part-whole, Personal-Social, ORG-Affiliation, Agent-Artifact, Gen-Affiliation

Hyperparameters

  • learning_rate=2e-5
  • num_train_epochs=10
  • weight_decay=0.01

How to use

Workflow of a relation extraction model:

  1. Input --> NER model --> Entities
  2. Input sentence + Entity 1 + Entity 2 --> Relation Classification Model --> Relation Type
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AuotoModelForSequenceClassification

>>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)

>>> re_model = AutoModelForSequenceClassification.from_pretrained("ychenNLP/arabic-relation-extraction")
>>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction")
>>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer)

def process_ner_output(entity_mention, inputs):
    re_input = []
    for idx1 in range(len(entity_mention) - 1):
        for idx2 in range(idx1 + 1, len(entity_mention)):
            ent_1 = entity_mention[idx1]
            ent_2 = entity_mention[idx2]

            ent_1_type = ent_1['entity_group']
            ent_2_type = ent_2['entity_group']
            ent_1_s = ent_1['start']
            ent_1_e = ent_1['end']
            ent_2_s = ent_2['start']
            ent_2_e = ent_2['end']
            new_re_input = ""
            for c_idx, c in enumerate(inputs):
                if c_idx == ent_1_s:
                    new_re_input += "<{}>".format(ent_1_type)
                elif c_idx == ent_1_e:
                    new_re_input += "</{}>".format(ent_1_type)
                elif c_idx == ent_2_s:
                    new_re_input += "<{}>".format(ent_2_type)
                elif c_idx == ent_2_e:
                    new_re_input += "</{}>".format(ent_2_type)
                new_re_input += c
            re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": inputs})
    return re_input
    
def post_process_re_output(re_output, text_input, ner_output):
    final_output = []
    for idx, out in enumerate(re_output):
        if out["label"] != 'O':
            tmp = re_input[idx]
            tmp['relation_type'] = out
            tmp.pop('re_input', None)
            final_output.append(tmp)

    template = {"input": text_input,
                "entity": ner_output,
                "relation": final_output}

    return template

text_input = """ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد."""

ner_output = ner_pip(text_input) # inference NER tags

re_input = process_ner_output(ner_output, text_input) # prepare a pair of entity and predict relation type

re_output = []
for idx in range(len(re_input)):
    tmp_re_output = re_pip(re_input[idx]["re_input"]) # for each pair of entity, predict relation
    re_output.append(tmp_re_output[0])



re_ner_output = post_process_re_output(re_output, text_input, ner_output) # post process NER and relation predictions
print("Sentence: ",re_ner_output["input"])
print('====Entity====')
for ent in re_ner_output["entity"]:
  print('{}--{}'.format(ent["word"], ent["entity_group"]))
print('====Relation====')
for rel in re_ner_output["relation"]:
  print('{}--{}:{}'.format(rel['arg1']['word'], rel['arg2']['word'], rel['relation_type']['label']))

Sentence:  ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد.
====Entity====
بايدن--PER
قادة--PER
الدول--GPE
الناتو--ORG
العاصمة--GPE
الاسبانية--GPE
مدريد--GPE
====Relation====
قادة--الدول:ORG-AFF
الدول--الناتو:ORG-AFF
العاصمة--الاسبانية:PART-WHOLE

BibTeX entry and citation info

@inproceedings{lan2020gigabert,
  author     = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan},
    title      = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic},
    booktitle  = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)},
    year       = {2020}
  } 
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.