|
--- |
|
base_model: |
|
- Qwen/Qwen2.5-VL-7B-Instruct |
|
license: apache-2.0 |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
## Overview |
|
OpenVLThinker-7B is a vision-language reasoning model designed to handle multimodal tasks. It is especially tuned for visual mathematical problem-solving. |
|
|
|
For more details: [Blog](https://yihe-deng.notion.site/openvlthinker), [GitHub](https://github.com/yihedeng9/OpenVLThinker) |
|
|
|
## How to use |
|
```python |
|
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration |
|
import torch |
|
from qwen_vl_utils import process_vision_info |
|
import requests |
|
from PIL import Image |
|
|
|
# 1. Define model and processor names |
|
model_name = "ydeng9/OpenVLThinker-7B" |
|
processor_name = "Qwen/Qwen2.5-VL-7B-Instruct" |
|
|
|
# 2. Load the OpenVLThinker-7B model and processor |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
device_map=device |
|
) |
|
processor = AutoProcessor.from_pretrained(processor_name) |
|
|
|
# 3. Define a sample image URL and an instruction |
|
image_url = "https://example.com/sample_image.jpg" # replace with your image URL |
|
instruction = "Example question" |
|
|
|
# 4. Create a multimodal prompt using a chat message structure |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": image_url}, |
|
{"type": "text", "text": instruction}, |
|
], |
|
} |
|
] |
|
|
|
# 5. Generate a text prompt from the chat messages |
|
text_prompt = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
# 6. Process image (and video) inputs from the messages |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text_prompt], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to(device) |
|
|
|
# 7. Generate the model's response (with specified generation parameters) |
|
generated_ids = model.generate( |
|
**inputs, |
|
do_sample=True, |
|
max_new_tokens=2048, |
|
top_p=0.001, |
|
top_k=1, |
|
temperature=0.01, |
|
repetition_penalty=1.0, |
|
) |
|
|
|
# 8. Decode the generated tokens into human-readable text |
|
generated_text = processor.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
# 9. Print the generated response |
|
print("Generated Response:") |
|
print(generated_text) |
|
``` |
|
|
|
### Citation |
|
```text |
|
@misc{deng2025openvlthinker, |
|
title={OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement}, |
|
author={Yihe Deng and Hritik Bansal and Fan Yin and Nanyun Peng and Wei Wang and Kai-Wei Chang}, |
|
year={2025}, |
|
eprint={2503.17352}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2503.17352}, |
|
} |
|
``` |