yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8208
  • Map: 0.5539
  • Map 50: 0.8071
  • Map 75: 0.6043
  • Map Small: -1.0
  • Map Medium: 0.4804
  • Map Large: 0.5761
  • Mar 1: 0.409
  • Mar 10: 0.7106
  • Mar 100: 0.7748
  • Mar Small: -1.0
  • Mar Medium: 0.6829
  • Mar Large: 0.7861
  • Map Banana: 0.4114
  • Mar 100 Banana: 0.775
  • Map Orange: 0.6102
  • Mar 100 Orange: 0.781
  • Map Apple: 0.6401
  • Mar 100 Apple: 0.7686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 2.1986 0.0068 0.0254 0.0016 -1.0 0.0068 0.0079 0.0246 0.0997 0.2776 -1.0 0.24 0.283 0.0109 0.2575 0.0002 0.0095 0.0092 0.5657
No log 2.0 120 1.9727 0.0088 0.03 0.0036 -1.0 0.0201 0.0089 0.0521 0.1605 0.3185 -1.0 0.26 0.3186 0.0163 0.4325 0.0 0.0 0.0103 0.5229
No log 3.0 180 1.9117 0.0353 0.114 0.0137 -1.0 0.0335 0.0411 0.1015 0.2692 0.4279 -1.0 0.28 0.4458 0.0185 0.415 0.0278 0.3714 0.0596 0.4971
No log 4.0 240 1.6734 0.0659 0.1642 0.0544 -1.0 0.1162 0.0783 0.1647 0.3225 0.4596 -1.0 0.28 0.4787 0.0818 0.485 0.0324 0.2452 0.0836 0.6486
No log 5.0 300 1.3011 0.1225 0.2534 0.1145 -1.0 0.1155 0.156 0.2833 0.4893 0.5985 -1.0 0.42 0.6231 0.0858 0.5575 0.0939 0.5238 0.1879 0.7143
No log 6.0 360 1.2643 0.2057 0.356 0.2293 -1.0 0.2614 0.2286 0.3177 0.5069 0.6091 -1.0 0.4843 0.6289 0.1166 0.5425 0.1363 0.5333 0.3641 0.7514
No log 7.0 420 1.1581 0.281 0.4787 0.2868 -1.0 0.3952 0.2874 0.3263 0.577 0.6758 -1.0 0.54 0.6973 0.139 0.6025 0.2267 0.619 0.4773 0.8057
No log 8.0 480 1.1026 0.3086 0.524 0.3347 -1.0 0.2653 0.3326 0.3576 0.58 0.6648 -1.0 0.5943 0.6766 0.2161 0.615 0.2935 0.631 0.4162 0.7486
1.4697 9.0 540 1.0055 0.3516 0.5724 0.3781 -1.0 0.3764 0.3613 0.3457 0.6023 0.7044 -1.0 0.6629 0.7125 0.2457 0.645 0.3506 0.7024 0.4585 0.7657
1.4697 10.0 600 0.9545 0.4136 0.6261 0.4555 -1.0 0.3712 0.4388 0.3688 0.6483 0.73 -1.0 0.6671 0.7413 0.2924 0.68 0.4384 0.75 0.51 0.76
1.4697 11.0 660 0.9475 0.423 0.6493 0.4547 -1.0 0.5066 0.4345 0.3763 0.662 0.7468 -1.0 0.6429 0.7622 0.2579 0.71 0.456 0.7476 0.5551 0.7829
1.4697 12.0 720 0.9563 0.4131 0.6719 0.4431 -1.0 0.4135 0.4285 0.3598 0.6447 0.7194 -1.0 0.5957 0.7354 0.3076 0.71 0.4745 0.731 0.4573 0.7171
1.4697 13.0 780 0.8893 0.4472 0.6689 0.4985 -1.0 0.4739 0.4567 0.3983 0.6573 0.7334 -1.0 0.6443 0.7447 0.3567 0.735 0.4538 0.7595 0.5309 0.7057
1.4697 14.0 840 0.9049 0.4915 0.7427 0.5237 -1.0 0.415 0.5107 0.3922 0.6898 0.7536 -1.0 0.6529 0.7674 0.3643 0.7375 0.5229 0.7405 0.5872 0.7829
1.4697 15.0 900 0.8799 0.4884 0.7419 0.5376 -1.0 0.4822 0.5042 0.3963 0.6875 0.7565 -1.0 0.6614 0.7686 0.3481 0.7525 0.5076 0.7571 0.6095 0.76
1.4697 16.0 960 0.8778 0.5014 0.7714 0.5549 -1.0 0.5352 0.5127 0.4015 0.6808 0.744 -1.0 0.6329 0.7593 0.3398 0.725 0.5527 0.75 0.6116 0.7571
0.7568 17.0 1020 0.8810 0.5025 0.7664 0.5708 -1.0 0.506 0.5126 0.3919 0.6854 0.7424 -1.0 0.6743 0.7518 0.3768 0.7325 0.5336 0.7405 0.5973 0.7543
0.7568 18.0 1080 0.8716 0.4942 0.7505 0.5653 -1.0 0.4833 0.509 0.3965 0.6756 0.7391 -1.0 0.6357 0.7515 0.374 0.7525 0.5074 0.719 0.6011 0.7457
0.7568 19.0 1140 0.8007 0.5072 0.7516 0.5666 -1.0 0.4698 0.524 0.411 0.7079 0.757 -1.0 0.6486 0.7697 0.3868 0.7625 0.5498 0.7429 0.5849 0.7657
0.7568 20.0 1200 0.8122 0.5502 0.8115 0.594 -1.0 0.4834 0.575 0.4175 0.7223 0.7704 -1.0 0.6486 0.7855 0.436 0.765 0.6078 0.769 0.6067 0.7771
0.7568 21.0 1260 0.8067 0.5387 0.7907 0.5869 -1.0 0.505 0.5602 0.3976 0.72 0.7725 -1.0 0.6486 0.7874 0.3823 0.7775 0.6032 0.7857 0.6306 0.7543
0.7568 22.0 1320 0.8331 0.5408 0.7992 0.5769 -1.0 0.4986 0.5614 0.4017 0.71 0.7596 -1.0 0.6614 0.7726 0.4037 0.745 0.5779 0.7595 0.6408 0.7743
0.7568 23.0 1380 0.8336 0.5386 0.7938 0.5854 -1.0 0.4914 0.56 0.4017 0.713 0.7625 -1.0 0.6657 0.7751 0.3928 0.75 0.5954 0.769 0.6277 0.7686
0.7568 24.0 1440 0.8137 0.5391 0.7978 0.593 -1.0 0.4835 0.5612 0.4081 0.7134 0.7681 -1.0 0.6714 0.7807 0.3796 0.7625 0.6057 0.7762 0.6321 0.7657
0.5523 25.0 1500 0.8126 0.5518 0.8009 0.5998 -1.0 0.4901 0.5745 0.4082 0.7152 0.7745 -1.0 0.6757 0.7869 0.3933 0.7725 0.6199 0.7881 0.6423 0.7629
0.5523 26.0 1560 0.8205 0.5528 0.8115 0.6105 -1.0 0.4859 0.5733 0.4063 0.711 0.7727 -1.0 0.7 0.7819 0.4121 0.77 0.6125 0.7881 0.6338 0.76
0.5523 27.0 1620 0.8211 0.5503 0.8075 0.6082 -1.0 0.4756 0.5729 0.4081 0.7088 0.7748 -1.0 0.7 0.7843 0.4064 0.77 0.6134 0.7857 0.6312 0.7686
0.5523 28.0 1680 0.8223 0.5543 0.8091 0.6061 -1.0 0.4809 0.5771 0.4082 0.7081 0.7758 -1.0 0.6929 0.7862 0.4103 0.7725 0.6136 0.7833 0.639 0.7714
0.5523 29.0 1740 0.8171 0.5531 0.806 0.6037 -1.0 0.4803 0.5755 0.409 0.7106 0.774 -1.0 0.6829 0.7852 0.4113 0.775 0.6079 0.7786 0.6401 0.7686
0.5523 30.0 1800 0.8208 0.5539 0.8071 0.6043 -1.0 0.4804 0.5761 0.409 0.7106 0.7748 -1.0 0.6829 0.7861 0.4114 0.775 0.6102 0.781 0.6401 0.7686

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yejimene/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(31)
this model