yolo_finetuned_fruits
This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8208
- Map: 0.5539
- Map 50: 0.8071
- Map 75: 0.6043
- Map Small: -1.0
- Map Medium: 0.4804
- Map Large: 0.5761
- Mar 1: 0.409
- Mar 10: 0.7106
- Mar 100: 0.7748
- Mar Small: -1.0
- Mar Medium: 0.6829
- Mar Large: 0.7861
- Map Banana: 0.4114
- Mar 100 Banana: 0.775
- Map Orange: 0.6102
- Mar 100 Orange: 0.781
- Map Apple: 0.6401
- Mar 100 Apple: 0.7686
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 60 | 2.1986 | 0.0068 | 0.0254 | 0.0016 | -1.0 | 0.0068 | 0.0079 | 0.0246 | 0.0997 | 0.2776 | -1.0 | 0.24 | 0.283 | 0.0109 | 0.2575 | 0.0002 | 0.0095 | 0.0092 | 0.5657 |
No log | 2.0 | 120 | 1.9727 | 0.0088 | 0.03 | 0.0036 | -1.0 | 0.0201 | 0.0089 | 0.0521 | 0.1605 | 0.3185 | -1.0 | 0.26 | 0.3186 | 0.0163 | 0.4325 | 0.0 | 0.0 | 0.0103 | 0.5229 |
No log | 3.0 | 180 | 1.9117 | 0.0353 | 0.114 | 0.0137 | -1.0 | 0.0335 | 0.0411 | 0.1015 | 0.2692 | 0.4279 | -1.0 | 0.28 | 0.4458 | 0.0185 | 0.415 | 0.0278 | 0.3714 | 0.0596 | 0.4971 |
No log | 4.0 | 240 | 1.6734 | 0.0659 | 0.1642 | 0.0544 | -1.0 | 0.1162 | 0.0783 | 0.1647 | 0.3225 | 0.4596 | -1.0 | 0.28 | 0.4787 | 0.0818 | 0.485 | 0.0324 | 0.2452 | 0.0836 | 0.6486 |
No log | 5.0 | 300 | 1.3011 | 0.1225 | 0.2534 | 0.1145 | -1.0 | 0.1155 | 0.156 | 0.2833 | 0.4893 | 0.5985 | -1.0 | 0.42 | 0.6231 | 0.0858 | 0.5575 | 0.0939 | 0.5238 | 0.1879 | 0.7143 |
No log | 6.0 | 360 | 1.2643 | 0.2057 | 0.356 | 0.2293 | -1.0 | 0.2614 | 0.2286 | 0.3177 | 0.5069 | 0.6091 | -1.0 | 0.4843 | 0.6289 | 0.1166 | 0.5425 | 0.1363 | 0.5333 | 0.3641 | 0.7514 |
No log | 7.0 | 420 | 1.1581 | 0.281 | 0.4787 | 0.2868 | -1.0 | 0.3952 | 0.2874 | 0.3263 | 0.577 | 0.6758 | -1.0 | 0.54 | 0.6973 | 0.139 | 0.6025 | 0.2267 | 0.619 | 0.4773 | 0.8057 |
No log | 8.0 | 480 | 1.1026 | 0.3086 | 0.524 | 0.3347 | -1.0 | 0.2653 | 0.3326 | 0.3576 | 0.58 | 0.6648 | -1.0 | 0.5943 | 0.6766 | 0.2161 | 0.615 | 0.2935 | 0.631 | 0.4162 | 0.7486 |
1.4697 | 9.0 | 540 | 1.0055 | 0.3516 | 0.5724 | 0.3781 | -1.0 | 0.3764 | 0.3613 | 0.3457 | 0.6023 | 0.7044 | -1.0 | 0.6629 | 0.7125 | 0.2457 | 0.645 | 0.3506 | 0.7024 | 0.4585 | 0.7657 |
1.4697 | 10.0 | 600 | 0.9545 | 0.4136 | 0.6261 | 0.4555 | -1.0 | 0.3712 | 0.4388 | 0.3688 | 0.6483 | 0.73 | -1.0 | 0.6671 | 0.7413 | 0.2924 | 0.68 | 0.4384 | 0.75 | 0.51 | 0.76 |
1.4697 | 11.0 | 660 | 0.9475 | 0.423 | 0.6493 | 0.4547 | -1.0 | 0.5066 | 0.4345 | 0.3763 | 0.662 | 0.7468 | -1.0 | 0.6429 | 0.7622 | 0.2579 | 0.71 | 0.456 | 0.7476 | 0.5551 | 0.7829 |
1.4697 | 12.0 | 720 | 0.9563 | 0.4131 | 0.6719 | 0.4431 | -1.0 | 0.4135 | 0.4285 | 0.3598 | 0.6447 | 0.7194 | -1.0 | 0.5957 | 0.7354 | 0.3076 | 0.71 | 0.4745 | 0.731 | 0.4573 | 0.7171 |
1.4697 | 13.0 | 780 | 0.8893 | 0.4472 | 0.6689 | 0.4985 | -1.0 | 0.4739 | 0.4567 | 0.3983 | 0.6573 | 0.7334 | -1.0 | 0.6443 | 0.7447 | 0.3567 | 0.735 | 0.4538 | 0.7595 | 0.5309 | 0.7057 |
1.4697 | 14.0 | 840 | 0.9049 | 0.4915 | 0.7427 | 0.5237 | -1.0 | 0.415 | 0.5107 | 0.3922 | 0.6898 | 0.7536 | -1.0 | 0.6529 | 0.7674 | 0.3643 | 0.7375 | 0.5229 | 0.7405 | 0.5872 | 0.7829 |
1.4697 | 15.0 | 900 | 0.8799 | 0.4884 | 0.7419 | 0.5376 | -1.0 | 0.4822 | 0.5042 | 0.3963 | 0.6875 | 0.7565 | -1.0 | 0.6614 | 0.7686 | 0.3481 | 0.7525 | 0.5076 | 0.7571 | 0.6095 | 0.76 |
1.4697 | 16.0 | 960 | 0.8778 | 0.5014 | 0.7714 | 0.5549 | -1.0 | 0.5352 | 0.5127 | 0.4015 | 0.6808 | 0.744 | -1.0 | 0.6329 | 0.7593 | 0.3398 | 0.725 | 0.5527 | 0.75 | 0.6116 | 0.7571 |
0.7568 | 17.0 | 1020 | 0.8810 | 0.5025 | 0.7664 | 0.5708 | -1.0 | 0.506 | 0.5126 | 0.3919 | 0.6854 | 0.7424 | -1.0 | 0.6743 | 0.7518 | 0.3768 | 0.7325 | 0.5336 | 0.7405 | 0.5973 | 0.7543 |
0.7568 | 18.0 | 1080 | 0.8716 | 0.4942 | 0.7505 | 0.5653 | -1.0 | 0.4833 | 0.509 | 0.3965 | 0.6756 | 0.7391 | -1.0 | 0.6357 | 0.7515 | 0.374 | 0.7525 | 0.5074 | 0.719 | 0.6011 | 0.7457 |
0.7568 | 19.0 | 1140 | 0.8007 | 0.5072 | 0.7516 | 0.5666 | -1.0 | 0.4698 | 0.524 | 0.411 | 0.7079 | 0.757 | -1.0 | 0.6486 | 0.7697 | 0.3868 | 0.7625 | 0.5498 | 0.7429 | 0.5849 | 0.7657 |
0.7568 | 20.0 | 1200 | 0.8122 | 0.5502 | 0.8115 | 0.594 | -1.0 | 0.4834 | 0.575 | 0.4175 | 0.7223 | 0.7704 | -1.0 | 0.6486 | 0.7855 | 0.436 | 0.765 | 0.6078 | 0.769 | 0.6067 | 0.7771 |
0.7568 | 21.0 | 1260 | 0.8067 | 0.5387 | 0.7907 | 0.5869 | -1.0 | 0.505 | 0.5602 | 0.3976 | 0.72 | 0.7725 | -1.0 | 0.6486 | 0.7874 | 0.3823 | 0.7775 | 0.6032 | 0.7857 | 0.6306 | 0.7543 |
0.7568 | 22.0 | 1320 | 0.8331 | 0.5408 | 0.7992 | 0.5769 | -1.0 | 0.4986 | 0.5614 | 0.4017 | 0.71 | 0.7596 | -1.0 | 0.6614 | 0.7726 | 0.4037 | 0.745 | 0.5779 | 0.7595 | 0.6408 | 0.7743 |
0.7568 | 23.0 | 1380 | 0.8336 | 0.5386 | 0.7938 | 0.5854 | -1.0 | 0.4914 | 0.56 | 0.4017 | 0.713 | 0.7625 | -1.0 | 0.6657 | 0.7751 | 0.3928 | 0.75 | 0.5954 | 0.769 | 0.6277 | 0.7686 |
0.7568 | 24.0 | 1440 | 0.8137 | 0.5391 | 0.7978 | 0.593 | -1.0 | 0.4835 | 0.5612 | 0.4081 | 0.7134 | 0.7681 | -1.0 | 0.6714 | 0.7807 | 0.3796 | 0.7625 | 0.6057 | 0.7762 | 0.6321 | 0.7657 |
0.5523 | 25.0 | 1500 | 0.8126 | 0.5518 | 0.8009 | 0.5998 | -1.0 | 0.4901 | 0.5745 | 0.4082 | 0.7152 | 0.7745 | -1.0 | 0.6757 | 0.7869 | 0.3933 | 0.7725 | 0.6199 | 0.7881 | 0.6423 | 0.7629 |
0.5523 | 26.0 | 1560 | 0.8205 | 0.5528 | 0.8115 | 0.6105 | -1.0 | 0.4859 | 0.5733 | 0.4063 | 0.711 | 0.7727 | -1.0 | 0.7 | 0.7819 | 0.4121 | 0.77 | 0.6125 | 0.7881 | 0.6338 | 0.76 |
0.5523 | 27.0 | 1620 | 0.8211 | 0.5503 | 0.8075 | 0.6082 | -1.0 | 0.4756 | 0.5729 | 0.4081 | 0.7088 | 0.7748 | -1.0 | 0.7 | 0.7843 | 0.4064 | 0.77 | 0.6134 | 0.7857 | 0.6312 | 0.7686 |
0.5523 | 28.0 | 1680 | 0.8223 | 0.5543 | 0.8091 | 0.6061 | -1.0 | 0.4809 | 0.5771 | 0.4082 | 0.7081 | 0.7758 | -1.0 | 0.6929 | 0.7862 | 0.4103 | 0.7725 | 0.6136 | 0.7833 | 0.639 | 0.7714 |
0.5523 | 29.0 | 1740 | 0.8171 | 0.5531 | 0.806 | 0.6037 | -1.0 | 0.4803 | 0.5755 | 0.409 | 0.7106 | 0.774 | -1.0 | 0.6829 | 0.7852 | 0.4113 | 0.775 | 0.6079 | 0.7786 | 0.6401 | 0.7686 |
0.5523 | 30.0 | 1800 | 0.8208 | 0.5539 | 0.8071 | 0.6043 | -1.0 | 0.4804 | 0.5761 | 0.409 | 0.7106 | 0.7748 | -1.0 | 0.6829 | 0.7861 | 0.4114 | 0.775 | 0.6102 | 0.781 | 0.6401 | 0.7686 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for yejimene/yolo_finetuned_fruits
Base model
hustvl/yolos-tiny