Edit model card

nbbert

This model is a fine-tuned version of NbAiLab/nb-bert-base on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9305
  • Precision: 0.9342
  • Recall: 0.9305
  • F1: 0.9305
  • Loss: 0.4443

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Precision Recall F1 Validation Loss
No log 0.9412 8 0.4361 0.6823 0.4361 0.3171 0.8924
No log 2.0 17 0.8851 0.8758 0.8851 0.8748 0.4652
No log 2.9412 25 0.8281 0.8333 0.8281 0.8204 0.5819
No log 4.0 34 0.8759 0.8922 0.8759 0.8749 0.4312
No log 4.9412 42 0.8550 0.8762 0.8550 0.8548 0.5312
No log 6.0 51 0.8944 0.8940 0.8944 0.8941 0.3318
No log 6.9412 59 0.9209 0.9255 0.9209 0.9210 0.3824
No log 8.0 68 0.9213 0.9282 0.9213 0.9219 0.4385
No log 8.9412 76 0.9205 0.9226 0.9205 0.9205 0.3830
No log 10.0 85 0.9249 0.9309 0.9249 0.9252 0.4137
No log 10.9412 93 0.9269 0.9310 0.9269 0.9270 0.4014
No log 12.0 102 0.9293 0.9321 0.9293 0.9293 0.3923
No log 12.9412 110 0.9277 0.9320 0.9277 0.9278 0.4565
No log 14.0 119 0.9305 0.9342 0.9305 0.9305 0.4166
No log 14.9412 127 0.9281 0.9325 0.9281 0.9282 0.4512
No log 16.0 136 0.9297 0.9336 0.9297 0.9298 0.4465
No log 16.9412 144 0.9273 0.9318 0.9273 0.9274 0.4624
No log 18.0 153 0.9277 0.9321 0.9277 0.9278 0.4593
No log 18.8235 160 0.9305 0.9342 0.9305 0.9305 0.4443

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/nbbert

Finetuned
(17)
this model