Quality Estimation for Machine Translation
This model is a fine-tuned version of answerdotai/ModernBERT-base on the ymoslem/wmt-da-human-evaluation-long-context dataset. It achieves the following results on the evaluation set:
- Loss: 0.0214
- Pearson: 0.5013
- MAE: 0.1024
- RMSE: 0.1464
- R2: 0.251
Model description
This model is for reference-free, long-context quality estimation (QE) of machine translation (MT) systems. It is trained on a dataset of translation pairs comprising up to 32 sentences (64 sentences for the source and target). Hence, this model is suitable for document-level quality estimation.
Training and evaluation data
The model is trained on the long-context dataset ymoslem/wmt-da-human-evaluation-long-context.
The used long-context / document-level dataset for Quality Estimation of Machine Translation is an augmented variant of the sentence-level WMT DA Human Evaluation dataset.
In addition to individual sentences, it contains augmentations of 2, 4, 8, 16, and 32 sentences, among each language pair lp
and domain
.
The raw
column represents a weighted average of scores of augmented sentences using character lengths of src
and mt
as weights.
- Training data: 7.65 million long-context texts
- Test data: 59,235 long-context texts
Training procedure
The model is trained on 1x H200 SXM (143 GB VRAM) for approx. 26 hours.
- tokenizer.model_max_length: 8192 (full context length)
- attn_implementation: flash_attention_2
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 60000 (approx. 1 epoch)
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0233 | 0.0167 | 1000 | 0.0233 |
0.0232 | 0.0335 | 2000 | 0.0230 |
0.0225 | 0.0502 | 3000 | 0.0230 |
0.023 | 0.0669 | 4000 | 0.0224 |
0.0226 | 0.0837 | 5000 | 0.0223 |
0.0226 | 0.1004 | 6000 | 0.0225 |
0.0219 | 0.1171 | 7000 | 0.0222 |
0.022 | 0.1339 | 8000 | 0.0222 |
0.0213 | 0.1506 | 9000 | 0.0221 |
0.0213 | 0.1673 | 10000 | 0.0220 |
0.0218 | 0.1840 | 11000 | 0.0219 |
0.0215 | 0.2008 | 12000 | 0.0225 |
0.0218 | 0.2175 | 13000 | 0.0219 |
0.0218 | 0.2342 | 14000 | 0.0218 |
0.0217 | 0.2510 | 15000 | 0.0219 |
0.0219 | 0.2677 | 16000 | 0.0219 |
0.0212 | 0.2844 | 17000 | 0.0219 |
0.0219 | 0.3012 | 18000 | 0.0219 |
0.0218 | 0.3179 | 19000 | 0.0219 |
0.0213 | 0.3346 | 20000 | 0.0217 |
0.0218 | 0.3514 | 21000 | 0.0217 |
0.021 | 0.3681 | 22000 | 0.0217 |
0.0219 | 0.3848 | 23000 | 0.0220 |
0.0211 | 0.4016 | 24000 | 0.0216 |
0.0211 | 0.4183 | 25000 | 0.0216 |
0.0206 | 0.4350 | 26000 | 0.0216 |
0.021 | 0.4517 | 27000 | 0.0215 |
0.0214 | 0.4685 | 28000 | 0.0215 |
0.0214 | 0.4852 | 29000 | 0.0216 |
0.0204 | 0.5019 | 30000 | 0.0216 |
0.022 | 0.5187 | 31000 | 0.0216 |
0.0212 | 0.5354 | 32000 | 0.0217 |
0.0211 | 0.5521 | 33000 | 0.0216 |
0.0208 | 0.5689 | 34000 | 0.0215 |
0.0208 | 0.5856 | 35000 | 0.0215 |
0.0215 | 0.6023 | 36000 | 0.0215 |
0.0212 | 0.6191 | 37000 | 0.0215 |
0.0213 | 0.6358 | 38000 | 0.0215 |
0.0211 | 0.6525 | 39000 | 0.0215 |
0.0208 | 0.6693 | 40000 | 0.0215 |
0.0205 | 0.6860 | 41000 | 0.0215 |
0.0209 | 0.7027 | 42000 | 0.0215 |
0.021 | 0.7194 | 43000 | 0.0215 |
0.0207 | 0.7362 | 44000 | 0.0215 |
0.0197 | 0.7529 | 45000 | 0.0215 |
0.0211 | 0.7696 | 46000 | 0.0214 |
0.021 | 0.7864 | 47000 | 0.0215 |
0.0207 | 0.8031 | 48000 | 0.0214 |
0.0219 | 0.8198 | 49000 | 0.0215 |
0.0208 | 0.8366 | 50000 | 0.0215 |
0.0202 | 0.8533 | 51000 | 0.0215 |
0.02 | 0.8700 | 52000 | 0.0215 |
0.0205 | 0.8868 | 53000 | 0.0214 |
0.0214 | 0.9035 | 54000 | 0.0215 |
0.0205 | 0.9202 | 55000 | 0.0214 |
0.0209 | 0.9370 | 56000 | 0.0214 |
0.0206 | 0.9537 | 57000 | 0.0214 |
0.0204 | 0.9704 | 58000 | 0.0214 |
0.0203 | 0.9872 | 59000 | 0.0214 |
0.0209 | 1.0039 | 60000 | 0.0214 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
Inference
- Install the required libraries.
pip3 install --upgrade datasets accelerate transformers
pip3 install --upgrade flash_attn triton
- Load the test dataset.
from datasets import load_dataset
test_dataset = load_dataset("ymoslem/wmt-da-human-evaluation",
split="test",
trust_remote_code=True
)
print(test_dataset)
- Load the model and tokenizer:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# Load the fine-tuned model and tokenizer
model_name = "ymoslem/ModernBERT-base-long-context-qe-v1"
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
- Prepare the dataset. Each source segment
src
and target segmenttgt
are separated by thesep_token
, which is'</s>'
for ModernBERT.
sep_token = tokenizer.sep_token
input_test_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(test_dataset["src"], test_dataset["mt"])]
- Generate predictions.
If you print model.config.problem_type
, the output is regression
.
Still, you can use the "text-classification" pipeline as follows (cf. pipeline documentation):
from transformers import pipeline
classifier = pipeline("text-classification",
model=model_name,
tokenizer=tokenizer,
device=0,
)
predictions = classifier(input_test_texts,
batch_size=128,
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
)
predictions = [prediction["score"] for prediction in predictions]
Alternatively, you can use an elaborate version of the code, which is slightly faster and provides more control.
from torch.utils.data import DataLoader
import torch
from tqdm.auto import tqdm
# Tokenization function
def process_batch(batch, tokenizer, device):
sep_token = tokenizer.sep_token
input_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(batch["src"], batch["mt"])]
tokens = tokenizer(input_texts,
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).to(device)
return tokens
# Create a DataLoader for batching
test_dataloader = DataLoader(test_dataset,
batch_size=128, # Adjust batch size as needed
shuffle=False)
# List to store all predictions
predictions = []
with torch.no_grad():
for batch in tqdm(test_dataloader, desc="Inference Progress", unit="batch"):
tokens = process_batch(batch, tokenizer, device)
# Forward pass: Generate model's logits
outputs = model(**tokens)
# Get logits (predictions)
logits = outputs.logits
# Extract the regression predicted values
batch_predictions = logits.squeeze()
# Extend the list with the predictions
predictions.extend(batch_predictions.tolist())
- Downloads last month
- 32
Model tree for ymoslem/ModernBERT-base-long-context-qe-v1
Base model
answerdotai/ModernBERT-baseDataset used to train ymoslem/ModernBERT-base-long-context-qe-v1
Collection including ymoslem/ModernBERT-base-long-context-qe-v1
Evaluation results
- Pearson Correlation on ymoslem/wmt-da-human-evaluation-long-contextself-reported0.501
- Mean Absolute Error on ymoslem/wmt-da-human-evaluation-long-contextself-reported0.102
- Root Mean Squared Error on ymoslem/wmt-da-human-evaluation-long-contextself-reported0.146
- R-Squared on ymoslem/wmt-da-human-evaluation-long-contextself-reported0.251