segformer-b5-finetuned-ce-head-image2
This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0928
- Mean Iou: 0.6512
- Mean Accuracy: 0.7000
- Overall Accuracy: 0.9683
- Accuracy Bg: 0.9910
- Accuracy Head: 0.4090
- Iou Bg: 0.9678
- Iou Head: 0.3345
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Head | Iou Bg | Iou Head |
---|---|---|---|---|---|---|---|---|---|---|
0.5565 | 2.5641 | 100 | 0.3927 | 0.4967 | 0.5584 | 0.9241 | 0.9510 | 0.1659 | 0.9237 | 0.0697 |
0.4096 | 5.1282 | 200 | 0.2417 | 0.4908 | 0.5078 | 0.9647 | 0.9973 | 0.0183 | 0.9647 | 0.0169 |
0.1814 | 7.6923 | 300 | 0.1784 | 0.4843 | 0.5014 | 0.9657 | 0.9998 | 0.0030 | 0.9657 | 0.0030 |
0.2171 | 10.2564 | 400 | 0.1415 | 0.4839 | 0.5000 | 0.9678 | 1.0000 | 0.0 | 0.9678 | 0.0 |
0.2484 | 12.8205 | 500 | 0.1329 | 0.4888 | 0.5051 | 0.9672 | 0.9999 | 0.0104 | 0.9672 | 0.0104 |
0.1531 | 15.3846 | 600 | 0.1211 | 0.5441 | 0.5619 | 0.9692 | 0.9981 | 0.1258 | 0.9691 | 0.1191 |
0.1601 | 17.9487 | 700 | 0.1141 | 0.5646 | 0.5846 | 0.9699 | 0.9974 | 0.1717 | 0.9697 | 0.1595 |
0.251 | 20.5128 | 800 | 0.0988 | 0.6005 | 0.6294 | 0.9708 | 0.9951 | 0.2637 | 0.9705 | 0.2305 |
0.1685 | 23.0769 | 900 | 0.0949 | 0.6359 | 0.6772 | 0.9719 | 0.9930 | 0.3615 | 0.9716 | 0.3002 |
0.0764 | 25.6410 | 1000 | 0.0969 | 0.6266 | 0.6652 | 0.9719 | 0.9933 | 0.3371 | 0.9716 | 0.2816 |
0.0915 | 28.2051 | 1100 | 0.0855 | 0.6589 | 0.7059 | 0.9737 | 0.9926 | 0.4192 | 0.9734 | 0.3444 |
0.1204 | 30.7692 | 1200 | 0.0849 | 0.6736 | 0.7274 | 0.9737 | 0.9916 | 0.4631 | 0.9732 | 0.3740 |
0.1037 | 33.3333 | 1300 | 0.0811 | 0.6619 | 0.7132 | 0.9734 | 0.9918 | 0.4345 | 0.9731 | 0.3507 |
0.1096 | 35.8974 | 1400 | 0.0856 | 0.6720 | 0.7410 | 0.9729 | 0.9890 | 0.4930 | 0.9725 | 0.3716 |
0.1051 | 38.4615 | 1500 | 0.0836 | 0.6800 | 0.7603 | 0.9725 | 0.9873 | 0.5332 | 0.9720 | 0.3880 |
0.2067 | 41.0256 | 1600 | 0.0786 | 0.6785 | 0.7414 | 0.9739 | 0.9903 | 0.4924 | 0.9735 | 0.3835 |
0.102 | 43.5897 | 1700 | 0.0786 | 0.6719 | 0.7272 | 0.9742 | 0.9915 | 0.4629 | 0.9738 | 0.3701 |
0.1705 | 46.1538 | 1800 | 0.0784 | 0.6733 | 0.7315 | 0.9738 | 0.9910 | 0.4720 | 0.9734 | 0.3732 |
0.0728 | 48.7179 | 1900 | 0.0778 | 0.6685 | 0.7265 | 0.9735 | 0.9908 | 0.4621 | 0.9731 | 0.3638 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for ypark-bioinfo/segformer-b5-finetuned-ce-head-image2
Base model
nvidia/mit-b5