Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
123 items
•
Updated
•
6
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from baidu/ERNIE-4.5-0.3B-PT.
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model_id = "yujiepan/ernie-4.5-tiny-random"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Generate answer
prompt = "What is AI?"
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
).to(model.device)
output = model.generate(
input_ids,
do_sample=True,
max_new_tokens=32,
)
print(tokenizer.decode(output[0], skip_special_tokens=False))
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
set_seed,
)
source_model_id = "baidu/ERNIE-4.5-0.3B-PT"
save_folder = "/tmp/yujiepan/ernie-4.5-tiny-random"
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 8
config_json['intermediate_size'] = 32
config_json['head_dim'] = 32
config_json['num_attention_heads'] = 16
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 8
config_json['tie_word_embeddings'] = True
config_json['use_cache'] = True
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
model.generation_config.do_sample = True
print(model.generation_config)
model = model.cpu()
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
Ernie4_5ForCausalLM(
(model): Ernie4_5Model(
(embed_tokens): Embedding(103424, 8, padding_idx=0)
(layers): ModuleList(
(0-1): 2 x Ernie4_5DecoderLayer(
(self_attn): Ernie4_5Attention(
(q_proj): Linear(in_features=8, out_features=512, bias=False)
(k_proj): Linear(in_features=8, out_features=256, bias=False)
(v_proj): Linear(in_features=8, out_features=256, bias=False)
(o_proj): Linear(in_features=512, out_features=8, bias=False)
)
(mlp): Ernie4_5MLP(
(gate_proj): Linear(in_features=8, out_features=32, bias=False)
(up_proj): Linear(in_features=8, out_features=32, bias=False)
(down_proj): Linear(in_features=32, out_features=8, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Ernie4_5RMSNorm((8,), eps=1e-05)
(post_attention_layernorm): Ernie4_5RMSNorm((8,), eps=1e-05)
)
)
(norm): Ernie4_5RMSNorm((8,), eps=1e-05)
(rotary_emb): Ernie4_5RotaryEmbedding()
)
(lm_head): Linear(in_features=8, out_features=103424, bias=False)
)
Base model
baidu/ERNIE-4.5-0.3B-PT