Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
140 items
•
Updated
•
6
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from google/gemma-2-27b-it.
from transformers import pipeline
model_id = "yujiepan/gemma-2-tiny-random"
pipe = pipeline('text-generation', model=model_id, device='cuda', dtype="bfloat16")
print(pipe('Hello World!'))
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
set_seed,
)
source_model_id = "google/gemma-2-27b-it"
save_folder = "/tmp/yujiepan/gemma-2-tiny-random"
processor = AutoProcessor.from_pretrained(
source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 8
config_json['intermediate_size'] = 64
config_json['num_attention_heads'] = 8
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 4
config_json['head_dim'] = 32
config_json['tie_word_embeddings'] = True
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
model = model.cpu()
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
Gemma2ForCausalLM(
(model): Gemma2Model(
(embed_tokens): Embedding(256000, 8, padding_idx=0)
(layers): ModuleList(
(0-1): 2 x Gemma2DecoderLayer(
(self_attn): Gemma2Attention(
(q_proj): Linear(in_features=8, out_features=256, bias=False)
(k_proj): Linear(in_features=8, out_features=128, bias=False)
(v_proj): Linear(in_features=8, out_features=128, bias=False)
(o_proj): Linear(in_features=256, out_features=8, bias=False)
)
(mlp): Gemma2MLP(
(gate_proj): Linear(in_features=8, out_features=64, bias=False)
(up_proj): Linear(in_features=8, out_features=64, bias=False)
(down_proj): Linear(in_features=64, out_features=8, bias=False)
(act_fn): GELUTanh()
)
(input_layernorm): Gemma2RMSNorm((8,), eps=1e-06)
(post_attention_layernorm): Gemma2RMSNorm((8,), eps=1e-06)
(pre_feedforward_layernorm): Gemma2RMSNorm((8,), eps=1e-06)
(post_feedforward_layernorm): Gemma2RMSNorm((8,), eps=1e-06)
)
)
(norm): Gemma2RMSNorm((8,), eps=1e-06)
(rotary_emb): Gemma2RotaryEmbedding()
)
(lm_head): Linear(in_features=8, out_features=256000, bias=False)
)