Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
128 items
•
Updated
•
6
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from ibm-granite/granite-4.0-h-small.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "yujiepan/granite-moe-hybrid-tiny-random"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True)
print(pipe('Write an article about Artificial Intelligence.'))
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
set_seed,
)
source_model_id = "ibm-granite/granite-4.0-h-small"
save_folder = "/tmp/yujiepan/granite-moe-hybrid-tiny-random"
processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 32
config_json['intermediate_size'] = 128
config_json['layer_types'] = ['mamba', 'attention']
config_json.update({
'mamba_expand': int(4096 / 32 * 2),
})
config_json['num_attention_heads'] = 2
config_json['shared_intermediate_size'] = 128
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 2
config_json['tie_word_embeddings'] = True
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
model = model.cpu()
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
GraniteMoeHybridForCausalLM(
(model): GraniteMoeHybridModel(
(embed_tokens): Embedding(100352, 32, padding_idx=100256)
(layers): ModuleList(
(0): GraniteMoeHybridDecoderLayer(
(block_sparse_moe): GraniteMoeHybridMoE(
(activation): SiLU()
(input_linear): GraniteMoeHybridParallelExperts()
(output_linear): GraniteMoeHybridParallelExperts()
(router): GraniteMoeHybridTopKGating(
(layer): Linear(in_features=32, out_features=72, bias=False)
)
)
(input_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05)
(post_attention_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05)
(shared_mlp): GraniteMoeHybridMLP(
(activation): SiLU()
(input_linear): Linear(in_features=32, out_features=256, bias=False)
(output_linear): Linear(in_features=128, out_features=32, bias=False)
)
(mamba): GraniteMoeHybridMambaLayer(
(act): SiLU()
(conv1d): Conv1d(8448, 8448, kernel_size=(4,), stride=(1,), padding=(3,), groups=8448)
(in_proj): Linear(in_features=32, out_features=16768, bias=False)
(norm): GraniteMoeHybridRMSNormGated()
(out_proj): Linear(in_features=8192, out_features=32, bias=False)
)
)
(1): GraniteMoeHybridDecoderLayer(
(block_sparse_moe): GraniteMoeHybridMoE(
(activation): SiLU()
(input_linear): GraniteMoeHybridParallelExperts()
(output_linear): GraniteMoeHybridParallelExperts()
(router): GraniteMoeHybridTopKGating(
(layer): Linear(in_features=32, out_features=72, bias=False)
)
)
(input_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05)
(post_attention_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05)
(shared_mlp): GraniteMoeHybridMLP(
(activation): SiLU()
(input_linear): Linear(in_features=32, out_features=256, bias=False)
(output_linear): Linear(in_features=128, out_features=32, bias=False)
)
(self_attn): GraniteMoeHybridAttention(
(q_proj): Linear(in_features=32, out_features=32, bias=False)
(k_proj): Linear(in_features=32, out_features=32, bias=False)
(v_proj): Linear(in_features=32, out_features=32, bias=False)
(o_proj): Linear(in_features=32, out_features=32, bias=False)
)
)
)
(norm): GraniteMoeHybridRMSNorm((32,), eps=1e-05)
)
(lm_head): Linear(in_features=32, out_features=100352, bias=False)
)
Base model
ibm-granite/granite-4.0-h-small