This model is for debugging. It is randomly initialized using the config from mistralai/Mistral-Nemo-Instruct-2407 but with smaller size.

Codes:

from transformers import pipeline
from huggingface_hub import create_repo, upload_folder
import torch
import transformers
import os

model_id = 'mistralai/Mistral-Nemo-Instruct-2407'
repo_id = 'yujiepan/mistral-nemo-2407-tiny-random'
save_path = f'/tmp/{repo_id}'

config = transformers.AutoConfig.from_pretrained(model_id)
config.hidden_size = 8
config.intermediate_size = 32
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 2
config.head_dim = 2
print(config)

tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.save_pretrained(save_path)

model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
model.generation_config = transformers.GenerationConfig.from_pretrained(model_id)

transformers.set_seed(42)
with torch.no_grad():
    for _, p in sorted(model.named_parameters()):
        torch.nn.init.uniform_(p, -0.1, 0.1)

pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda')
print(pipe('Hello World!'))

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model=save_path, max_length=1000, max_new_tokens=16)
print(chatbot(messages))

model.save_pretrained(save_path)
Downloads last month
11
Safetensors
Model size
2.1M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including yujiepan/mistral-nemo-2407-tiny-random