vit-base-patch16-224-food101
This model is a fine-tuned version of eslamxm/vit-base-food101 on the food101 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3856
- Accuracy: 0.8971
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Script
"cmd_list": [
"python",
"run_image_classification.py",
"--model_name_or_path",
"eslamxm/vit-base-food101",
"--dataset_name",
"food101",
"--output_dir",
"<output_dir>",
"--overwrite_output_dir",
"--remove_unused_columns",
"False",
"--do_train",
"--do_eval",
"--optim",
"adamw_torch",
"--learning_rate",
"6e-05",
"--num_train_epochs",
"3",
"--dataloader_num_workers",
"10",
"--per_device_train_batch_size",
"64",
"--gradient_accumulation_steps",
"2",
"--per_device_eval_batch_size",
"128",
"--logging_strategy",
"steps",
"--logging_steps",
"10",
"--evaluation_strategy",
"steps",
"--eval_steps",
"500",
"--save_steps",
"500",
"--evaluation_strategy",
"epoch",
"--save_strategy",
"epoch",
"--load_best_model_at_end",
"False",
"--save_total_limit",
"1",
"--seed",
"42",
"--fp16"
]
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3687 | 1.0 | 592 | 0.4044 | 0.8889 |
0.3422 | 2.0 | 1184 | 0.3911 | 0.8953 |
0.3808 | 3.0 | 1776 | 0.3856 | 0.8971 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 192
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.