whisper-large-v3-cv-capes-filtered-pt
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1991 | 0.2833 | 50 | 0.1383 |
0.1258 | 0.5666 | 100 | 0.1127 |
0.1117 | 0.8499 | 150 | 0.1086 |
0.0848 | 1.1303 | 200 | 0.1065 |
0.0874 | 1.4136 | 250 | 0.1060 |
0.0807 | 1.6969 | 300 | 0.1055 |
0.0793 | 1.9802 | 350 | 0.1055 |
0.0598 | 2.2606 | 400 | 0.1111 |
0.0591 | 2.5439 | 450 | 0.1156 |
0.0581 | 2.8272 | 500 | 0.1117 |
0.0447 | 3.1076 | 550 | 0.1226 |
0.0448 | 3.3909 | 600 | 0.1210 |
0.0478 | 3.6742 | 650 | 0.1230 |
0.0426 | 3.9575 | 700 | 0.1225 |
0.0326 | 4.2380 | 750 | 0.1339 |
0.0339 | 4.5212 | 800 | 0.1360 |
0.0356 | 4.8045 | 850 | 0.1338 |
0.0283 | 5.0850 | 900 | 0.1430 |
0.0298 | 5.3683 | 950 | 0.1449 |
0.0267 | 5.6516 | 1000 | 0.1440 |
Framework versions
- Transformers 4.50.2
- Pytorch 2.5.1+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 36
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for yuriyvnv/whisper-large-v3-cv-capes-filtered-pt
Base model
openai/whisper-large-v3