whisper-large-v3-cv-capes-filtered-pt

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1440

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 128
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
0.1991 0.2833 50 0.1383
0.1258 0.5666 100 0.1127
0.1117 0.8499 150 0.1086
0.0848 1.1303 200 0.1065
0.0874 1.4136 250 0.1060
0.0807 1.6969 300 0.1055
0.0793 1.9802 350 0.1055
0.0598 2.2606 400 0.1111
0.0591 2.5439 450 0.1156
0.0581 2.8272 500 0.1117
0.0447 3.1076 550 0.1226
0.0448 3.3909 600 0.1210
0.0478 3.6742 650 0.1230
0.0426 3.9575 700 0.1225
0.0326 4.2380 750 0.1339
0.0339 4.5212 800 0.1360
0.0356 4.8045 850 0.1338
0.0283 5.0850 900 0.1430
0.0298 5.3683 950 0.1449
0.0267 5.6516 1000 0.1440

Framework versions

  • Transformers 4.50.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
36
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yuriyvnv/whisper-large-v3-cv-capes-filtered-pt

Finetuned
(587)
this model