whisper-large-v3-mixed-pt
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset.
It achieves the following results on the evaluation set:
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 256
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
0.2809 |
0.3106 |
50 |
0.1335 |
0.1703 |
0.6211 |
100 |
0.1115 |
0.1533 |
0.9317 |
150 |
0.1090 |
0.1145 |
1.2422 |
200 |
0.1084 |
0.1084 |
1.5528 |
250 |
0.1093 |
0.1192 |
1.8634 |
300 |
0.1054 |
0.0687 |
2.1739 |
350 |
0.1124 |
0.07 |
2.4845 |
400 |
0.1136 |
0.0687 |
2.7950 |
450 |
0.1128 |
0.0548 |
3.1056 |
500 |
0.1282 |
0.0438 |
3.4161 |
550 |
0.1263 |
0.0486 |
3.7267 |
600 |
0.1259 |
0.0428 |
4.0373 |
650 |
0.1297 |
0.0321 |
4.3478 |
700 |
0.1399 |
0.0329 |
4.6584 |
750 |
0.1366 |
0.0358 |
4.9689 |
800 |
0.1404 |
0.0224 |
5.2795 |
850 |
0.1586 |
0.0241 |
5.5901 |
900 |
0.1615 |
0.0219 |
5.9006 |
950 |
0.1599 |
0.0141 |
6.2112 |
1000 |
0.1701 |
0.0166 |
6.5217 |
1050 |
0.1745 |
0.0169 |
6.8323 |
1100 |
0.1734 |
0.0118 |
7.1429 |
1150 |
0.1843 |
0.0123 |
7.4534 |
1200 |
0.1836 |
0.0128 |
7.7640 |
1250 |
0.1869 |
0.0103 |
8.0745 |
1300 |
0.1881 |
0.01 |
8.3851 |
1350 |
0.1927 |
0.0107 |
8.6957 |
1400 |
0.1907 |
0.009 |
9.0062 |
1450 |
0.1923 |
0.0088 |
9.3168 |
1500 |
0.1970 |
0.0087 |
9.6273 |
1550 |
0.1974 |
0.0083 |
9.9379 |
1600 |
0.1967 |
Framework versions
- Transformers 4.50.2
- Pytorch 2.5.1+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2