bert-complaint-classifier

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0486
  • Accuracy: 0.9926
  • F1 Macro: 0.9927
  • F1 Weighted: 0.9926
  • Precision Macro: 0.9932
  • Recall Macro: 0.9921

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Weighted Precision Macro Recall Macro
1.0494 0.5556 100 0.9475 0.7085 0.6573 0.6771 0.8076 0.6735
0.5058 1.1111 200 0.2953 0.9852 0.9859 0.9853 0.9865 0.9853
0.0956 1.6667 300 0.0682 0.9815 0.9824 0.9815 0.9835 0.9818
0.0065 2.2222 400 0.0484 0.9889 0.9892 0.9889 0.9899 0.9887
0.0023 2.7778 500 0.0486 0.9926 0.9927 0.9926 0.9932 0.9921

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yusufbukarmaina/bert-complaint-classifier

Finetuned
(5744)
this model