bert-complaint-classifier
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0486
- Accuracy: 0.9926
- F1 Macro: 0.9927
- F1 Weighted: 0.9926
- Precision Macro: 0.9932
- Recall Macro: 0.9921
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro |
---|---|---|---|---|---|---|---|---|
1.0494 | 0.5556 | 100 | 0.9475 | 0.7085 | 0.6573 | 0.6771 | 0.8076 | 0.6735 |
0.5058 | 1.1111 | 200 | 0.2953 | 0.9852 | 0.9859 | 0.9853 | 0.9865 | 0.9853 |
0.0956 | 1.6667 | 300 | 0.0682 | 0.9815 | 0.9824 | 0.9815 | 0.9835 | 0.9818 |
0.0065 | 2.2222 | 400 | 0.0484 | 0.9889 | 0.9892 | 0.9889 | 0.9899 | 0.9887 |
0.0023 | 2.7778 | 500 | 0.0486 | 0.9926 | 0.9927 | 0.9926 | 0.9932 | 0.9921 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 8
Model tree for yusufbukarmaina/bert-complaint-classifier
Base model
google-bert/bert-base-uncased