Edit model card

Llama3-8B-SuperNova-Spectrum-Hermes-DPO

This model is a DPO fine-tuned version of my DARE_TIES merged Model yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties on the yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k dataset.

DPO (Direct Preference Optimization):

Direct Preference Optimization (DPO) is a fine-tuning technique that focuses on aligning a model's responses with human preferences or ranking data without requiring reinforcement learning steps, like in RLHF.

DPO vs RLHF Reference

Training:

  • Trained on 1x A40s (48GB VRAM) using the HuggingFace TRL.
  • QLoRA(4-bit precision) for 1 epoch
    # LoRA configuration
    peft_config = LoraConfig(
        r=32,
        lora_alpha=16,
        lora_dropout=0.05,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
    )
    

Training Params

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • beta=0.1
  • num_devices: 1
  • gradient_accumulation_steps: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training Time = 1:57:00 hours

Weight & Biases Report

Report-Link

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

πŸ† Evaluation Scores

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 18.00
IFEval (0-Shot) 46.91
BBH (3-Shot) 21.24
MATH Lvl 5 (4-Shot) 5.14
GPQA (0-shot) 6.94
MuSR (0-shot) 9.62
MMLU-PRO (5-shot) 18.16
Downloads last month
28
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO

Quantizations
2 models

Evaluation results