Llama3-8B-SuperNova-Spectrum-Hermes-DPO
This model is a DPO fine-tuned version of my DARE_TIES
merged Model yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties
on the yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k dataset.
DPO (Direct Preference Optimization):
Direct Preference Optimization (DPO) is a fine-tuning technique that focuses on aligning a model's responses with human preferences or ranking data without requiring reinforcement learning steps, like in RLHF.
Training:
- Trained on 1x A40s (48GB VRAM) using the HuggingFace TRL.
- QLoRA(
4-bit precision
) for 1 epoch# LoRA configuration peft_config = LoraConfig( r=32, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] )
Training Params
The following hyperparameters were used during training:
- learning_rate: 5e-05
- beta=0.1
- num_devices: 1
- gradient_accumulation_steps: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training Time = 1:57:00 hours
Weight & Biases Report
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
π Evaluation Scores
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 18.00 |
IFEval (0-Shot) | 46.91 |
BBH (3-Shot) | 21.24 |
MATH Lvl 5 (4-Shot) | 5.14 |
GPQA (0-shot) | 6.94 |
MuSR (0-shot) | 9.62 |
MMLU-PRO (5-shot) | 18.16 |
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard46.910
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard21.240
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard5.140
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.940
- acc_norm on MuSR (0-shot)Open LLM Leaderboard9.620
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard18.160