Built with Axolotl

See axolotl config

axolotl version: 0.10.0

base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: false
load_in_4bit: true

datasets:

  - path: "cognitivecomputations/dolphin"
    name: "flan1m-alpaca-uncensored"
    type: alpaca
    split: train[:25000]

  - path: causal-lm/ultrachat
    type: alpaca
    split: train[:25000]

  
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out-0-3

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: false

gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

outputs/qlora-out-0-3

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the cognitivecomputations/dolphin and the causal-lm/ultrachat datasets. It achieves the following results on the evaluation set:

  • Loss: 0.9045

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 897

Training results

Training Loss Epoch Step Validation Loss
No log 0 0 0.9881
0.8599 0.2508 75 0.8906
0.9047 0.5017 150 0.8825
0.9083 0.7525 225 0.8768
0.7706 1.0033 300 0.8729
0.8222 1.2542 375 0.8810
0.8122 1.5050 450 0.8807
0.7571 1.7559 525 0.8785
0.7191 2.0067 600 0.8822
0.6796 2.2575 675 0.9030
0.6789 2.5084 750 0.9029
0.6852 2.7592 825 0.9045

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
22
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for yzw1424349151/Mistral-7B-v0_3-qlora

Adapter
(2285)
this model

Datasets used to train yzw1424349151/Mistral-7B-v0_3-qlora