See axolotl config
axolotl version: 0.10.0
base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: true
datasets:
- path: "cognitivecomputations/dolphin"
name: "flan1m-alpaca-uncensored"
type: alpaca
split: train[:25000]
- path: causal-lm/ultrachat
type: alpaca
split: train[:25000]
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out-0-3
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
outputs/qlora-out-0-3
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the cognitivecomputations/dolphin and the causal-lm/ultrachat datasets. It achieves the following results on the evaluation set:
- Loss: 0.9045
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 897
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 0.9881 |
0.8599 | 0.2508 | 75 | 0.8906 |
0.9047 | 0.5017 | 150 | 0.8825 |
0.9083 | 0.7525 | 225 | 0.8768 |
0.7706 | 1.0033 | 300 | 0.8729 |
0.8222 | 1.2542 | 375 | 0.8810 |
0.8122 | 1.5050 | 450 | 0.8807 |
0.7571 | 1.7559 | 525 | 0.8785 |
0.7191 | 2.0067 | 600 | 0.8822 |
0.6796 | 2.2575 | 675 | 0.9030 |
0.6789 | 2.5084 | 750 | 0.9029 |
0.6852 | 2.7592 | 825 | 0.9045 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.5.1+cu121
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 22
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yzw1424349151/Mistral-7B-v0_3-qlora
Base model
mistralai/Mistral-7B-v0.1